Flocking Dynamics of Singularly Perturbed Oscillator Chain and the Cucker-Smale System

被引:40
作者
Ha, Seung-Yeal [2 ]
Slemrod, Marshall [1 ]
机构
[1] Univ Wisconsin, Dept Math, Madison, WI 53706 USA
[2] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
关键词
Flocking; Particles; Singular perturbation limit; Tikhonov theory; DIFFERENTIAL-EQUATIONS; EMERGENCE; PARTICLE;
D O I
10.1007/s10884-009-9142-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this note, we show how the one-dimensional Cucker-Smale system for "flocking" dynamics can be recovered as a singular perturbation limit of a chain of damped oscillators.
引用
收藏
页码:325 / 330
页数:6
相关论文
共 13 条
[1]  
[Anonymous], 2005, Texts in Applied Mathematics
[2]  
[Anonymous], 1950, Mat Sb
[3]   Singularly perturbed ordinary differential equations with dynamic limits [J].
Artstein, Z ;
Vigodner, A .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1996, 126 :541-569
[4]   Slow observables of singularly perturbed differential equations [J].
Artstein, Zvi ;
Kevrekidis, Ioannis G. ;
Slemrod, Marshall ;
Titi, Edriss S. .
NONLINEARITY, 2007, 20 (11) :2463-2481
[5]   On the mathematics of emergence [J].
Cucker, Felipe ;
Smale, Steve .
JAPANESE JOURNAL OF MATHEMATICS, 2007, 2 (01) :197-227
[6]   Emergent behavior in flocks [J].
Cucker, Felipe ;
Smale, Steve .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2007, 52 (05) :852-862
[7]   Noise-induced transition from translational to rotational motion of swarms [J].
Erdmann, U ;
Ebeling, W ;
Mikhailov, AS .
PHYSICAL REVIEW E, 2005, 71 (05)
[8]  
Ha SY, 2009, COMMUN MATH SCI, V7, P453
[9]  
Ha SY, 2009, COMMUN MATH SCI, V7, P297
[10]  
Ha SY, 2008, KINET RELAT MOD, V1, P415