Nanostructured Lithium Nickel Manganese Oxides for Lithium-Ion Batteries

被引:83
|
作者
Deng, Haixia [1 ]
Belharouak, Ilias [1 ]
Cook, Russel E. [2 ]
Wu, Huiming [1 ]
Sun, Yang-Kook [3 ]
Amine, Khalil [1 ]
机构
[1] Argonne Natl Lab, Chem Sci & Engn Div, Argonne, IL 60439 USA
[2] Argonne Natl Lab, Div Mat Sci, Argonne, IL 60439 USA
[3] Hanyang Univ, Dept Chem Engn, Ctr Informat & Commun Mat, Seoul 133791, South Korea
关键词
battery powered vehicles; electrochemical electrodes; hybrid electric vehicles; lithium compounds; nanostructured materials; nickel compounds; secondary cells; SITU X-RAY; CATHODE MATERIALS; SECONDARY BATTERIES; ELECTROCHEMICAL-BEHAVIOR; ELECTRODES; CAPACITY; DIFFRACTION; NMR;
D O I
10.1149/1.3308598
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Nanostructured lithium nickel manganese oxides were investigated as advanced positive electrode materials for lithium-ion batteries designated to power plug-in hybrid electric vehicles and all-electric vehicles. The investigation included material characterization and electrochemical testing. In cell tests, the Li(1.375)Ni(0.25)Mn(0.75)O(2.4375) composition achieved high capacity (210 mAh g(-1)) at an elevated rate (230 mA g(-1)), which makes this material a promising candidate for high energy density Li-ion batteries, as does its being cobalt-free and uncoated. The material has spherical morphology with nanoprimary particles embedded in micrometer-sized secondary particles, possesses a multiphase character (spinel and layered), and exhibits a high packing density (over 2 g cm(-3)) that is essential for the design of high energy density positive electrodes. When combined with the Li(4)Ti(5)O(12) stable anode, the cell showed a capacity of 225 mAh g(-1) at the C/3 rate (73 mA g(-1)) with no capacity fading for 200 cycles. Other chemical compositions, Li((1+x))Ni(0.25)Mn(0.75)O((2.25+x/2)) (0.32 < x < 0.65), were also studied, and the relationships among their structural, morphological, and electrochemical properties are reported.
引用
收藏
页码:A447 / A452
页数:6
相关论文
共 50 条
  • [1] Effect of Cobalt Incorporation and Lithium Enrichment in Lithium Nickel Manganese Oxides
    Deng, H.
    Belharouak, I.
    Wu, H.
    Dambournet, D.
    Amine, K.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (07) : A776 - A781
  • [2] Precision Measurements of the Coulombic Efficiency of Lithium-Ion Batteries and of Electrode Materials for Lithium-Ion Batteries
    Smith, A. J.
    Burns, J. C.
    Trussler, S.
    Dahn, J. R.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2010, 157 (02) : A196 - A202
  • [3] Synthesis of hierarchical mesoporous lithium nickel cobalt manganese oxide spheres with high rate capability for lithium-ion batteries
    Tong, Wei
    Huang, Yudai
    Cai, Yanjun
    Guo, Yong
    Wang, Xingchao
    Jia, Dianzeng
    Sun, Zhipeng
    Pang, Weikong
    Guo, Zaiping
    Zong, Jun
    APPLIED SURFACE SCIENCE, 2018, 428 : 1036 - 1045
  • [4] High Performance Composite Lithium-Rich Nickel Manganese Oxide Cathodes for Lithium-Ion Batteries
    Gummow, Rosalind J.
    Sharma, Neeraj
    Feng, Ruishu
    Han, Guihong
    He, Yinghe
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (10) : A1856 - A1862
  • [5] Facile synthesis of hierarchically structured manganese oxides as anode for lithium-ion batteries
    Deng Zhao
    Huang Xing
    Zhao Xu
    Cheng Hua
    Wang Hong-en
    JOURNAL OF CENTRAL SOUTH UNIVERSITY, 2019, 26 (06) : 1481 - 1492
  • [6] Reviving the lithium-manganese-based layered oxide cathodes for lithium-ion batteries
    Liu, Shiqi
    Wang, Boya
    Zhang, Xu
    Zhao, Shu
    Zhang, Zihe
    Yu, Haijun
    MATTER, 2021, 4 (05) : 1511 - 1527
  • [7] Lithium-Ion Conductive Coatings for Nickel-Rich Cathodes for Lithium-Ion Batteries
    Shao, Yijia
    Xu, Jia
    Amardeep, Amardeep
    Xia, Yakang
    Meng, Xiangbo
    Liu, Jian
    Liao, Shijun
    SMALL METHODS, 2024, 8 (12)
  • [8] Sodium deficient nickel-manganese oxides as intercalation electrodes in lithium ion batteries
    Kalapsazova, M.
    Stoyanova, R.
    Zhecheva, E.
    Tyuliev, G.
    Nihtianova, D.
    JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (45) : 19383 - 19395
  • [9] Synthesis and Electrochemical Properties of Spinel Lithium Manganese Oxides for Lithium Ion Batteries
    Wang, Gaojun
    Chen, Linfeng
    Mathur, Gyanesh N.
    Varadan, Vijay K.
    NANOSENSORS, BIOSENSORS, AND INFO-TECH SENSORS AND SYSTEMS 2013, 2013, 8691
  • [10] Temperature-Sensitive Structure Evolution of Lithium-Manganese-Rich Layered Oxides for Lithium-Ion Batteries
    Yu, Haijun
    So, Yeong-Gi
    Ren, Yang
    Wu, Tianhao
    Guo, Gencai
    Xiao, Ruijuan
    Lu, Jun
    Li, Hong
    Yang, Yubo
    Zhou, Haoshen
    Wang, Ruzhi
    Amine, Khalil
    Ikuhara, Yuichi
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (45) : 15279 - 15289