A proof of the Livingston conjecture

被引:25
作者
Avkhadiev, Farit G. [1 ]
Wirths, Karl-Joachim
机构
[1] Kazan VI Lenin State Univ, Chebotarev Res Inst, Kazan 420008, Russia
[2] Tech Univ Carolo Wilhelmina Braunschweig, Inst Anal & Algebra, D-38106 Braunschweig, Germany
关键词
D O I
10.1515/FORUM.2007.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let D denote the open unit disc and f : D -> (C) over bar be meromorphic and injective in D. We further assume that f has a simple pole at the point p is an element of (0, 1) and an expansion f (z) = z + Sigma(infinity)(n=2) a(n) (f)z(n), vertical bar z vertical bar < p. In particular, we consider functions f that map D onto a domain whose complement with respect to CC is convex. Because of the shape of f (D) these functions will be called concave univalent functions with pole p and the family of these functions is denoted by Co(p). It is proved that for fixed p is an element of (0, 1) the domain of variability of the coefficient a(n) (f), n >= 2, f is an element of Co(p), is determined by the inequality vertical bar a(n) (f)- 1-p(2n+2)/p(n-1)(1-p(4))vertical bar <= p(2)(1-p(2n-2)/p(n-1)(1-p(4))) This settles two conjectures published by A. E. Livingston in 1994 and by Ch. Pornmerenke and the authors of the present article in 2004.
引用
收藏
页码:149 / 157
页数:9
相关论文
共 17 条
[1]  
Avkhadiev F. G., 2004, MATH CLUJ, V46, P19
[2]  
Avkhadiev F. G., 2002, COMPLEX VAR THEORY A, V47, P553
[3]   On the coefficients of concave univalent functions [J].
Avkhadiev, FG ;
Pommerenke, C ;
Wirths, KJ .
MATHEMATISCHE NACHRICHTEN, 2004, 271 :3-9
[4]   Poles near the origin produce lower bounds for coefficients of meromorphic univalent functions [J].
Avkhadiev, FG ;
Wirths, KJ .
MICHIGAN MATHEMATICAL JOURNAL, 2004, 52 (01) :119-130
[5]  
AVKHADIEV FG, IN PRESS MATH HELV
[6]  
Duren P. L., 1970, PURE APPL MATH, V38
[7]  
Jenkins J.A., 1962, MICHIGAN MATH J, V9, P25, DOI DOI 10.1307/MMJ/1028998616
[8]  
LEWANDOW.Z, 1965, B ACAD POL SCI SMAP, V13, P21
[9]  
Livingston AE., 1994, ANN POL MATH, V59, P275, DOI [10.4064/ap-59-3-275-291, DOI 10.4064/AP-59-3-275-291]
[10]   EXTREMUM PROBLEMS IN THE THEORY OF ANALYTIC FUNCTIONS [J].
MACINTYRE, AJ ;
ROGOSINSKI, WW .
ACTA MATHEMATICA, 1950, 82 (04) :275-325