CONFIDENCE SETS FOR PERSISTENCE DIAGRAMS

被引:141
作者
Fasy, Brittany Terese [1 ]
Lecci, Fabrizio [2 ]
Rinaldo, Alessandro [2 ]
Wasserman, Larry [2 ]
Balakrishnan, Sivaraman [3 ]
Singh, Aarti [3 ]
机构
[1] Tulane Univ, Dept Comp Sci, New Orleans, LA 70118 USA
[2] Carnegie Mellon Univ, Dept Stat, Pittsburgh, PA 15213 USA
[3] Carnegie Mellon Univ, Dept Comp Sci, Pittsburgh, PA 15213 USA
关键词
Persistent homology; topology; density estimation; NONPARAMETRIC-ESTIMATION; DENSITY ESTIMATORS; TOPOLOGY; HOMOLOGY; SUPPORT;
D O I
10.1214/14-AOS1252
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Persistent homology is a method for probing topological properties of point clouds and functions. The method involves tracking the birth and death of topological features (2000) as one varies a tuning parameter. Features with short lifetimes are informally considered to be "topological noise," and those with a long lifetime are considered to be "topological signal." In this paper, we bring some statistical ideas to persistent homology. In particular, we derive confidence sets that allow us to separate topological signal from topological noise.
引用
收藏
页码:2301 / 2339
页数:39
相关论文
共 48 条
  • [1] [Anonymous], 2000, OXFORD MATH MONOGR
  • [2] [Anonymous], 2003, OXFORD STUDIES PROBA
  • [3] BALAKRISHNAN S., 2011, PREPRINT
  • [4] BENDICH P., 2010, PREPRINT
  • [5] Improving homology estimates with random walks
    Bendich, Paul
    Galkovskyi, Taras
    Harer, John
    [J]. INVERSE PROBLEMS, 2011, 27 (12)
  • [6] BLUMBERG A. J., 2012, PREPRINT
  • [7] A statistical approach to persistent homology
    Bubenik, Peter
    Kim, Peter T.
    [J]. HOMOLOGY HOMOTOPY AND APPLICATIONS, 2007, 9 (02) : 337 - 362
  • [8] Bubenik P, 2010, CONTEMP MATH, V516, P75
  • [9] The Theory of Multidimensional Persistence
    Carlsson, Gunnar
    Zomorodian, Afra
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2009, 42 (01) : 71 - 93
  • [10] TOPOLOGY AND DATA
    Carlsson, Gunnar
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 46 (02) : 255 - 308