Engineering arbitrarily oriented spatiotemporal optical vortices using transmission nodal lines

被引:65
作者
Wang, Haiwen [1 ]
Guo, Cheng [1 ]
Jin, Weiliang [2 ]
Song, Alex Y. [2 ]
Fan, Shanhui [2 ]
机构
[1] Stanford Univ, Dept Appl Phys, Ginzton Lab, Stanford, CA 94305 USA
[2] Stanford Univ, Ginzton Lab, Dept Elect Engn, Stanford, CA 94305 USA
来源
OPTICA | 2021年 / 8卷 / 07期
关键词
MODE; DIFFERENTIATION;
D O I
10.1364/OPTICA.426460
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
It has been recently demonstrated that optical pulses can hold transverse orbital angular momentum(OAM). Generation of such vortices typically requires bulky optics, and only OAMs that are fully longitudinal or transverse have been demonstrated until now. Here we investigate a general family of spatiotemporal vortices with arbitrarily oriented OAM and introduce a compact device for its generation. The device operates by having a transmission nodal line, which is a topological defect in the wavevector-frequency spectra of the transmission coefficient. We show that the position and dispersion of the transmission nodal line can be controlled by structural symmetry of the device. By transmitting a Gaussian pulse through the device, we can generate spatiotemporal vortices with its nodal line and OAM oriented along any arbitrary direction. This ability to generate a full family of spatiotemporal vortex pulses may find application in pulse shaping or sensing in the spatiotemporal domain. Our work also provides a novel approach of engineering topological response functions in photonic crystal slabs. (C) 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement
引用
收藏
页码:966 / 971
页数:6
相关论文
共 31 条
[1]   Spin-orbit interactions of light [J].
Bliokh, K. Y. ;
Rodriguez-Fortuno, F. J. ;
Nori, F. ;
Zayats, A. V. .
NATURE PHOTONICS, 2015, 9 (12) :796-808
[2]  
Bliokh K. Y., PHYS REV LETT
[3]   Spatiotemporal vortex beams and angular momentum [J].
Bliokh, Konstantin Y. ;
Nori, Franco .
PHYSICAL REVIEW A, 2012, 86 (03)
[4]   Terabit-Scale Orbital Angular Momentum Mode Division Multiplexing in Fibers [J].
Bozinovic, Nenad ;
Yue, Yang ;
Ren, Yongxiong ;
Tur, Moshe ;
Kristensen, Poul ;
Huang, Hao ;
Willner, Alan E. ;
Ramachandran, Siddharth .
SCIENCE, 2013, 340 (6140) :1545-1548
[5]   Generation of spatiotemporal optical vortices with controllable transverse orbital angular momentum [J].
Chong, Andy ;
Wan, Chenhao ;
Chen, Jian ;
Zhan, Qiwen .
NATURE PHOTONICS, 2020, 14 (06) :350-+
[6]   Evolution of orbital angular momentum in three-dimensional structured light [J].
Dorrah, Ahmed H. ;
Rosales-Guzman, Carmelo ;
Forbes, Andrew ;
Mojahedi, Mo .
PHYSICAL REVIEW A, 2018, 98 (04)
[7]   Analysis of guided resonances in photonic crystal slabs [J].
Fan, SH ;
Joannopoulos, JD .
PHYSICAL REVIEW B, 2002, 65 (23) :1-8
[8]   Polarization singularities from unfolding an optical vortex through a birefringent crystal [J].
Flossmann, F ;
Schwarz, UT ;
Maier, M ;
Dennis, MR .
PHYSICAL REVIEW LETTERS, 2005, 95 (25)
[9]   Free-space propagation of spatiotemporal optical vortices [J].
Hancock, S. W. ;
Zahedpour, S. ;
Goffin, A. ;
Milchberg, H. M. .
OPTICA, 2019, 6 (12) :1547-1553
[10]   Forward-Mode Differentiation of Maxwell's Equations [J].
Hughes, Tyler W. ;
Williamson, Ian A. D. ;
Minkov, Momchil ;
Fan, Shanhui .
ACS PHOTONICS, 2019, 6 (11) :3010-3016