Spatio-Temporal Plasma Afterglow Induces Additional Neutral Drag Force on Microparticles

被引:15
作者
van Huijstee, J. C. A. [1 ]
Blom, P. [2 ]
Peijnenburg, A. T. A. [2 ]
Beckers, J. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, Eindhoven, Netherlands
[2] VDL Enabling Technol Grp, Eindhoven, Netherlands
关键词
dusty plasma; afterglow plasma; microparticles; neutral drag; pressure wave; neutral gas temperature; diagnostics; COMPLEX DUSTY PLASMAS; MOTION;
D O I
10.3389/fphy.2022.926160
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An emerging topic in complex plasma physics is the interaction between dust particles and afterglow plasmas. Control of plasma-particle interactions and specifically of the particle trajectories is especially relevant for plasma based contamination control applications. In systems where this contamination control is relevant, emerging or applied plasmas can be of highly transient nature, due to which contaminating particles interact with a combination of a spatial and a temporal afterglow plasma. Until now this type of plasmas and the possible interaction with embedded microparticles has remained far from fully explored in literature. In this work we visually record falling microparticles in a spatio-temporal afterglow of a low pressure inductively coupled plasma and observe a sudden and temporary reversal in their vertical velocity. Numerical simulations confirm that this effect is due to the cooling of the heated background gas in the former active plasma region, which creates a pressure wave and causes microparticles in the spatial afterglow to experience an additional neutral drag force in direction of the plasma bulk. Besides being an interesting principle phenomenon, the presence of this effect could have added value for developing plasma-driven particle contamination control applications. Moreover, for a well defined vacuum vessel geometry and plasma heating volume, this enables the use of microparticles in the spatio-temporal afterglow as probe for the neutral gas temperature in plasma.
引用
收藏
页数:8
相关论文
共 40 条
[31]   ELECTRODE DESIGN FOR TESTING IN UNIFORM-FIELD GAPS [J].
TRINH, NG .
IEEE TRANSACTIONS ON POWER APPARATUS AND SYSTEMS, 1980, 99 (03) :1235-1242
[32]   EUV-induced hydrogen plasma: pulsed mode operation and confinement in scanner [J].
van de Kerkhof, Mark ;
Yakunin, Andrei M. ;
Astakhov, Dmitry ;
van Kampen, Maarten ;
van der Horst, Ruud ;
Banine, Vadim .
JOURNAL OF MICRO-NANOPATTERNING MATERIALS AND METROLOGY-JM3, 2021, 20 (03)
[33]   Advanced Particle Contamination Control in EUV Scanners [J].
van de Kerkhof, Mark ;
van Empel, Tjarko ;
Lercel, Michael ;
Smeets, Christophe ;
van de Wetering, Ferdi ;
Nikipelov, Andrey ;
Cloin, Christian ;
Yakunin, Andrei ;
Banine, Vadim .
EXTREME ULTRAVIOLET (EUV) LITHOGRAPHY X, 2019, 10957
[34]   Charge of clustered microparticles measured in spatial plasma afterglows follows the smallest enclosing sphere model [J].
van Minderhout, B. ;
van Huijstee, J. C. A. ;
Rompelberg, R. M. H. ;
Post, A. ;
Peijnenburg, A. T. A. ;
Blom, P. ;
Beckers, J. .
NATURE COMMUNICATIONS, 2021, 12 (01)
[35]   Charge neutralisation of microparticles by pulsing a low-pressure shielded spatial plasma afterglow [J].
van Minderhout, B. ;
van Huijstee, J. C. A. ;
Peijnenburg, A. T. A. ;
Blom, P. ;
Kroesen, G. M. W. ;
Beckers, J. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2021, 30 (04)
[36]   Charge control of micro-particles in a shielded plasma afterglow [J].
van Minderhout, B. ;
van Huijstee, J. C. A. ;
Platier, B. ;
Peijnenburg, T. ;
Blom, P. ;
Kroesen, G. M. W. ;
Beckers, J. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2020, 29 (06)
[37]   The charge of micro-particles in a low pressure spatial plasma afterglow [J].
van Minderhout, B. ;
Peijnenburg, T. ;
Blom, P. ;
Vogels, J. M. ;
Kroesen, G. M. W. ;
Beckers, J. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2019, 52 (32)
[38]  
van Minderhout B., 2021, MICROPARTICLE CHARGI
[39]  
Walter R., 1923, Archiv fur Elektrotechnik, V12, P1, DOI [DOI 10.1007/BF01656573, 10.1007/BF01656573]
[40]   The effect of a direct current field on the microparticle charge in the plasma afterglow [J].
Woerner, L. ;
Ivlev, A. V. ;
Coueedel, L. ;
Huber, P. ;
Schwabe, M. ;
Hagl, T. ;
Mikikian, M. ;
Boufendi, L. ;
Skvortsov, A. ;
Lipaev, A. M. ;
Molotkov, V. I. ;
Petrov, O. F. ;
Fortov, V. E. ;
Thomas, H. M. ;
Morfill, G. E. .
PHYSICS OF PLASMAS, 2013, 20 (12)