Spatio-Temporal Plasma Afterglow Induces Additional Neutral Drag Force on Microparticles

被引:14
作者
van Huijstee, J. C. A. [1 ]
Blom, P. [2 ]
Peijnenburg, A. T. A. [2 ]
Beckers, J. [1 ]
机构
[1] Eindhoven Univ Technol, Dept Appl Phys, Eindhoven, Netherlands
[2] VDL Enabling Technol Grp, Eindhoven, Netherlands
来源
FRONTIERS IN PHYSICS | 2022年 / 10卷
关键词
dusty plasma; afterglow plasma; microparticles; neutral drag; pressure wave; neutral gas temperature; diagnostics; COMPLEX DUSTY PLASMAS; MOTION;
D O I
10.3389/fphy.2022.926160
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
An emerging topic in complex plasma physics is the interaction between dust particles and afterglow plasmas. Control of plasma-particle interactions and specifically of the particle trajectories is especially relevant for plasma based contamination control applications. In systems where this contamination control is relevant, emerging or applied plasmas can be of highly transient nature, due to which contaminating particles interact with a combination of a spatial and a temporal afterglow plasma. Until now this type of plasmas and the possible interaction with embedded microparticles has remained far from fully explored in literature. In this work we visually record falling microparticles in a spatio-temporal afterglow of a low pressure inductively coupled plasma and observe a sudden and temporary reversal in their vertical velocity. Numerical simulations confirm that this effect is due to the cooling of the heated background gas in the former active plasma region, which creates a pressure wave and causes microparticles in the spatial afterglow to experience an additional neutral drag force in direction of the plasma bulk. Besides being an interesting principle phenomenon, the presence of this effect could have added value for developing plasma-driven particle contamination control applications. Moreover, for a well defined vacuum vessel geometry and plasma heating volume, this enables the use of microparticles in the spatio-temporal afterglow as probe for the neutral gas temperature in plasma.
引用
收藏
页数:8
相关论文
共 40 条
[1]   Microparticles in a Collisional Rf Plasma Sheath under Hypergravity Conditions as Probes for the Electric Field Strength and the Particle Charge [J].
Beckers, J. ;
Ockenga, T. ;
Wolter, M. ;
Stoffels, W. W. ;
van Dijk, J. ;
Kersten, H. ;
Kroesen, G. M. W. .
PHYSICAL REVIEW LETTERS, 2011, 106 (11)
[2]   Particle contamination control by application of plasma [J].
Beckers, Job ;
van Minderhout, Boy ;
Blom, Paul ;
Kroesen, Gerrit ;
Peijnenburg, Ton .
EXTREME ULTRAVIOLET (EUV) LITHOGRAPHY XI, 2020, 11323
[3]   EUV-Induced Plasma: A Peculiar Phenomenon of a Modern Lithographic Technology [J].
Beckers, Job ;
van de Ven, Tijn ;
van der Horst, Ruud ;
Astakhov, Dmitry ;
Banine, Vadim .
APPLIED SCIENCES-BASEL, 2019, 9 (14)
[4]   Positive charging of grains in an afterglow plasma is enhanced by ions drifting in an electric field [J].
Chaubey, Neeraj ;
Goree, J. ;
Lanham, Steven J. ;
Kushner, Mark J. .
PHYSICS OF PLASMAS, 2021, 28 (10)
[5]   Nanoparticle dynamics in the spatial afterglows of nonthermal plasma synthesis reactors [J].
Chen, Xiaoshuang ;
Hogan, Christopher J., Jr. .
CHEMICAL ENGINEERING JOURNAL, 2021, 411
[6]   Size and structural characterization of Si nanocrystal aggregates from a low pressure nonthermal plasma reactor [J].
Chen, Xiaoshuang ;
Seto, Takafumi ;
Kortshagen, Uwe R. ;
Hogan, Christopher J., Jr. .
POWDER TECHNOLOGY, 2020, 373 :164-173
[7]   Residual dust charges in discharge afterglow [J].
Couedel, L. ;
Mikikian, M. ;
Boufendi, L. ;
Samarian, A. A. .
PHYSICAL REVIEW E, 2006, 74 (02)
[8]   Complex Plasma Afterglow [J].
Couedel, L. ;
Mezeghrane, A. ;
Samarian, A. A. ;
Mikikian, M. ;
Tessier, Y. ;
Cavarroc, M. ;
Boufendi, L. .
CONTRIBUTIONS TO PLASMA PHYSICS, 2009, 49 (4-5) :235-259
[9]   Influence of the ambipolar-to-free diffusion transition on dust particle charge in a complex plasma afterglow [J].
Couedel, L. ;
Samarian, A. A. ;
Mikikian, M. ;
Boufendi, L. .
PHYSICS OF PLASMAS, 2008, 15 (06)
[10]   Dust dynamics during the plasma afterglow [J].
Denysenko, I. B. ;
Mikikian, M. ;
Azarenkov, N. A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (09)