Finite fractal dimension of pullback attractors for a nonclassical diffusion equation

被引:0
作者
Dong, Xiaolei [1 ]
Qin, Yuming [2 ,3 ]
机构
[1] Donghua Univ, Coll Informat Sci & Technol, Shanghai 201620, Peoples R China
[2] Donghua Univ, Dept Math, Shanghai 201620, Peoples R China
[3] Donghua Univ, Inst Nonlinear Sci, Shanghai 201620, Peoples R China
来源
AIMS MATHEMATICS | 2022年 / 7卷 / 05期
基金
中国国家自然科学基金;
关键词
nonclassical di ffusion equations; finite fractal dimension; pullback attractors; GLOBAL ATTRACTORS; UPPER SEMICONTINUITY; ASYMPTOTIC-BEHAVIOR; UNIFORM ATTRACTORS; EXISTENCE; DYNAMICS;
D O I
10.3934/math.2022449
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the finite fractal dimension of pullback attractors for a nonclassical di ffusion equation in H-0(1) (Omega). First, we prove the existence of pullback attractors for a nonclassical di ffusion equation with arbitrary polynomial growth condition by applying the operator decomposition method. Then, by the fractal dimension theorem of pullback attractors given by [6], we prove the finite fractal dimension of pullback attractors for a nonclassical di ffusion equation in H-0(1) (Omega)..
引用
收藏
页码:8064 / 8079
页数:16
相关论文
共 53 条
[1]  
Anh C. T., 2012, Int. J. Math. Math. Sci., V2012, P875
[2]   Existence, uniqueness and asymptotic behavior of solutions for a nonclassical diffusion equation with delay [J].
Caraballo, T. ;
Marquez-Duran, A. M. .
DYNAMICS OF PARTIAL DIFFERENTIAL EQUATIONS, 2013, 10 (03) :267-281
[3]   ASYMPTOTIC BEHAVIOUR OF A NON-CLASSICAL AND NON-AUTONOMOUS DIFFUSION EQUATION CONTAINING SOME HEREDITARY CHARACTERISTIC [J].
Caraballo, Tomas ;
Marquez-Duran, Antonio M. ;
Rivero, Felipe .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (05) :1817-1833
[4]   Well-Posedness and Asymptotic Behavior of a Nonclassical Nonautonomous Diffusion Equation with Delay [J].
Caraballo, Tomas ;
Marquez-Duran, Antonio M. ;
Rivero, Felipe .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (14)
[5]   Attractors for the generalized Benjamin-Bona-Mahony equation [J].
Çelebi, AO ;
Kalantarov, VK ;
Polat, M .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 157 (02) :439-451
[6]   Finite dimensionality of global attractors for a non-classical reaction-diffusion equation with memory [J].
Chen, Tao ;
Chen, Zhe ;
Tang, Yanbin .
APPLIED MATHEMATICS LETTERS, 2012, 25 (03) :357-362
[7]   On trajectory and global attractors for semilinear heat equations with fading memory [J].
Chepyzhov, VV ;
Miranville, A .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2006, 55 (01) :119-167
[8]   Trajectory and global attractors of dissipative hyperbolic equations with memory [J].
Chepyzhov, VV ;
Miranville, A .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2005, 4 (01) :115-142
[9]  
Chueshov I. D., 1999, Introduction to the Theory of Infinite Dimensional Dissipative Systems
[10]   NONCLASSICAL DIFFUSION WITH MEMORY LACKING INSTANTANEOUS DAMPING [J].
Conti, Monica ;
Dell'Oro, Filippo ;
Pata, Vittorino .
COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (04) :2035-2050