Traffic jams: dynamics and control INTRODUCTION

被引:296
作者
Orosz, Gabor [1 ,2 ]
Wilson, R. Eddie [3 ]
Stepan, Gabor [4 ,5 ]
机构
[1] Univ Calif Santa Barbara, Dept Mech Engn, Santa Barbara, CA 93106 USA
[2] Univ Michigan, Dept Mech Engn, Ann Arbor, MI 48109 USA
[3] Univ Bristol, Dept Engn Math, Bristol BS8 1TR, Avon, England
[4] Hungarian Acad Sci, Res Grp Dynam Vehicles & Machines, H-1521 Budapest, Hungary
[5] Budapest Univ Technol & Econ, Dept Appl Mech, H-1521 Budapest, Hungary
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2010年 / 368卷 / 1928期
关键词
vehicular traffic; congestion; stop-and-go waves; Hopf bifurcation; driver reaction time; unstable waves; CAR-FOLLOWING MODEL; REACTION-TIME; FUNDAMENTAL DIAGRAM; BEHAVIORAL-THEORY; FLOW; STABILITY; CONGESTION; DENSITIES; STATES; DELAY;
D O I
10.1098/rsta.2010.0205
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This introductory paper reviews the current state-of-the-art scientific methods used for modelling, analysing and controlling the dynamics of vehicular traffic. Possible mechanisms underlying traffic jam formation and propagation are presented from a dynamical viewpoint. Stable and unstable motions are described that may give the skeleton of traffic dynamics, and the effects of driver behaviour are emphasized in determining the emergent state in a vehicular system. At appropriate points, references are provided to the papers published in the corresponding Theme Issue.
引用
收藏
页码:4455 / 4479
页数:25
相关论文
共 74 条
[1]  
[Anonymous], NGSIM-Next Generation Simulation [EB/OL]
[2]   Resurrection of "second order" models of traffic flow [J].
Aw, A ;
Rascle, M .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2000, 60 (03) :916-938
[3]   DYNAMICAL MODEL OF TRAFFIC CONGESTION AND NUMERICAL-SIMULATION [J].
BANDO, M ;
HASEBE, K ;
NAKAYAMA, A ;
SHIBATA, A ;
SUGIYAMA, Y .
PHYSICAL REVIEW E, 1995, 51 (02) :1035-1042
[4]   Analysis of optimal velocity model with explicit delay [J].
Bando, M ;
Hasebe, K ;
Nakanishi, K ;
Nakayama, A .
PHYSICAL REVIEW E, 1998, 58 (05) :5429-5435
[5]   An n-populations model for traffic flow [J].
Benzoni-Gavage, S ;
Colombo, RM .
EUROPEAN JOURNAL OF APPLIED MATHEMATICS, 2003, 14 :587-612
[6]   Continuum approach to car-following models [J].
Berg, P ;
Mason, A ;
Woods, A .
PHYSICAL REVIEW E, 2000, 61 (02) :1056-1066
[7]   Autonomous driving in urban environments: approaches, lessons and challenges [J].
Campbell, Mark ;
Egerstedt, Magnus ;
How, Jonathan P. ;
Murray, Richard M. .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 368 (1928) :4649-4672
[8]   Optimal Motorway Traffic Flow Control Involving Variable Speed Limits and Ramp Metering [J].
Carlson, Rodrigo C. ;
Papamichail, Ioannis ;
Papageorgiou, Markos ;
Messmer, Albert .
TRANSPORTATION SCIENCE, 2010, 44 (02) :238-253
[9]   TRAFFIC DYNAMICS - STUDIES IN CAR FOLLOWING [J].
CHANDLER, RE ;
HERMAN, R ;
MONTROLL, EW .
OPERATIONS RESEARCH, 1958, 6 (02) :165-184
[10]   An analytical approximation for the macroscopic fundamental diagram of urban traffic [J].
Daganzo, Carlos F. ;
Geroliminis, Nikolas .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2008, 42 (09) :771-781