Topological susceptibility with the asqtad action

被引:29
作者
Bazavov, A. [1 ]
Toussaint, D. [1 ]
Bernard, C. [2 ]
Laiho, J. [2 ]
Billeter, B. [3 ]
DeTar, C. [3 ]
Levkova, L. [3 ]
Oktay, M. B. [3 ]
Gottlieb, Steven [4 ]
Heller, U. M. [5 ]
Hetrick, J. E. [6 ]
Osborn, J. [7 ]
Sugar, R. L. [8 ]
Van de Water, R. S. [9 ]
机构
[1] Univ Arizona, Dept Phys, Tucson, AZ 85721 USA
[2] Washington Univ, Dept Phys, St Louis, MO 63130 USA
[3] Univ Utah, Dept Phys, Salt Lake City, UT 84112 USA
[4] Indiana Univ, Dept Phys, Bloomington, IN 47405 USA
[5] Amer Phys Soc, Ridge, NY 11961 USA
[6] Univ Pacific, Dept Phys, Stockton, CA 95211 USA
[7] Argonne Natl Lab, Argonne, IL 60439 USA
[8] Univ Calif Santa Barbara, Dept Phys, Santa Barbara, CA 93106 USA
[9] Brookhaven Natl Lab, Dept Phys, Upton, NY 11973 USA
来源
PHYSICAL REVIEW D | 2010年 / 81卷 / 11期
基金
美国国家科学基金会;
关键词
LATTICE; QCD; FLAVORS; CHARGE; U(1);
D O I
10.1103/PhysRevD.81.114501
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Chiral perturbation theory predicts that in quantum chromodynamics (QCD), light dynamical quarks suppress the gauge-field topological susceptibility of the vacuum. The degree of suppression depends on quark multiplicity and masses. It provides a strong consistency test for fermion formulations in lattice QCD. Such tests are especially important for staggered fermion formulations that lack a full chiral symmetry and use the "fourth-root'' procedure to achieve the desired number of sea quarks. Over the past few years we have measured the topological susceptibility on a large database of 18 gauge-field ensembles, generated in the presence of 2 + 1 flavors of dynamical asqtad quarks with up and down quark masses ranging from 0.05 to 1 in units of the strange quark mass and lattice spacings ranging from 0.045 fm to 0.12 fm. Our study also includes three quenched ensembles with lattice spacings ranging from 0.06 to 0.12 fm. We construct the topological susceptibility from the integrated point-to-point correlator of the discretized topological charge density F (F) over tilde. To reduce its variance, we model the asymptotic tail of the correlator. The continuum extrapolation of our results for the topological susceptibility agrees nicely at small quark mass with the predictions of lowest-order SU(3) chiral perturbation theory, thus lending support to the validity of the fourth-root procedure.
引用
收藏
页数:12
相关论文
共 37 条
[1]  
[Anonymous], POS LATTICE2007
[2]   Topological susceptibility in two-flavor lattice QCD with exact chiral symmetry [J].
Aoki, S. ;
Chiu, T. W. ;
Fukaya, H. ;
Hashimoto, S. ;
Hsieh, T. H. ;
Kaneko, T. ;
Matsufuru, H. ;
Noaki, J. ;
Ogawa, K. ;
Onogi, T. ;
Yamada, N. .
PHYSICS LETTERS B, 2008, 665 (04) :294-297
[3]   Finite volume QCD at fixed topological charge [J].
Aoki, Sinya ;
Fukaya, Hidenori ;
Hashimoto, Shoji ;
Onogi, Tetsuya .
PHYSICAL REVIEW D, 2007, 76 (05)
[4]   Topological susceptibility with three flavors of staggered quarks [J].
Aubin, C ;
Bernard, C ;
Billeter, B ;
DeTar, C ;
Gottlieb, S ;
Gregory, EB ;
Heller, UM ;
Hetrick, JE ;
Osborn, J ;
Sugar, RL ;
Toussaint, D .
NUCLEAR PHYSICS B-PROCEEDINGS SUPPLEMENTS, 2005, 140 :600-602
[5]   Light hadrons with improved staggered quarks: Approaching the continuum limit [J].
Aubin, C ;
Bernard, C ;
DeTar, C ;
Osborn, J ;
Gottlieb, S ;
Gregory, EB ;
Toussaint, D ;
Heller, UM ;
Hetrick, JE ;
Sugar, R .
PHYSICAL REVIEW D, 2004, 70 (09)
[6]   Pion and kaon masses in staggered chiral perturbation theory [J].
Aubin, C ;
Bernard, C .
PHYSICAL REVIEW D, 2003, 68 (03)
[7]   Nonperturbative QCD simulations with 2+1 flavors of improved staggered quarks [J].
Bazavov, A. ;
Toussaint, D. ;
Bernard, C. ;
Laiho, J. ;
DeTar, C. ;
Levkova, L. ;
Oktay, M. B. ;
Gottlieb, Steven ;
Heller, U. M. ;
Hetrick, J. E. ;
Mackenzie, P. B. ;
Sugar, R. ;
Van de Water, R. S. .
REVIEWS OF MODERN PHYSICS, 2010, 82 (02) :1349-1417
[8]   Topological susceptibility with the improved Asqtad action [J].
Bernard, C ;
DeGrand, T ;
Hasenfratz, A ;
DeTar, C ;
Osborn, J ;
Gottlieb, S ;
Gregory, E ;
Toussaint, D ;
Hart, A ;
Heller, UM ;
Hetrick, J ;
Sugar, RL .
PHYSICAL REVIEW D, 2003, 68 (11)
[9]   QCD spectrum with three quark flavors [J].
Bernard, C ;
Burch, T ;
Orginos, K ;
Toussaint, D ;
DeGrand, TA ;
DeTar, C ;
Datta, S ;
Gottlieb, S ;
Heller, UM ;
Sugar, R .
PHYSICAL REVIEW D, 2001, 64 (05)
[10]   Topological susceptibility in staggered fermion chiral perturbation theory [J].
Billeter, B ;
DeTar, C ;
Osborn, J .
PHYSICAL REVIEW D, 2004, 70 (07)