A new Bernstein's inequality and the 2D dissipative quasi-geostrophic equation

被引:196
作者
Chen, Qionglei
Miao, Changxing
Zhang, Zhifei
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Peking Univ, Sch Math Sci, Beijing 100871, Peoples R China
关键词
D O I
10.1007/s00220-007-0193-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We show a new Bernstein's inequality which generalizes the results of Cannone-Planchon, Danchin and Lemarie-Rieusset. As an application of this inequality, we prove the global well-posedness of the 2D quasi-geostrophic equation with the critical and super-critical dissipation for the small initial data in the critical Besov space, and local well-posedness for the large initial data.
引用
收藏
页码:821 / 838
页数:18
相关论文
共 26 条
[1]  
[Anonymous], 1983, MONOGRAPH MATH
[2]  
BERGH J, 1976, INTRODUCTION
[3]  
BONY JM, 1981, ANN SCI ECOLE NORM S, V14, P209
[4]  
Cannone M, 2002, LECT NOTES PURE APPL, V223, P19
[5]   The quasi-geostrophic equation in the Triebel-Lizorkin spaces [J].
Chae, D .
NONLINEARITY, 2003, 16 (02) :479-495
[6]   Global well-posedness in the super-critical dissipative quasi-geostrophic equations [J].
Chae, D ;
Lee, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2003, 233 (02) :297-311
[7]  
Chemin J.-Y., 1998, Perfect Incompressible Fluids
[8]   FLOW OF NON-LIPSCHITZ VECTOR-FIELDS AND NAVIER-STOKES EQUATIONS [J].
CHEMIN, JY ;
LERNER, N .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1995, 121 (02) :314-328
[9]   FORMATION OF STRONG FRONTS IN THE 2-D QUASI-GEOSTROPHIC THERMAL ACTIVE SCALAR [J].
CONSTANTIN, P ;
MAJDA, AJ ;
TABAK, E .
NONLINEARITY, 1994, 7 (06) :1495-1533
[10]   On the critical dissipative quasi-geostrophic equation [J].
Constantin, P ;
Cordoba, D ;
Wu, JH .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2001, 50 :97-107