A Reproducible MEG/EEG Group Study With the MNE Software: Recommendations, Quality Assessments, and Good Practices

被引:78
作者
Jas, Mainak [1 ]
Larson, Eric [2 ]
Engemann, Denis A. [3 ,4 ]
Leppakangas, Jaakko [1 ]
Taulu, Samu [2 ,5 ]
Hamalainen, Matti [6 ]
Gramfort, Alexandre [1 ,3 ,4 ]
机构
[1] Univ Paris Saclay, Telecom ParisTech, Paris, France
[2] Univ Washington, Inst Learning & Brain Sci, Seattle, WA 98195 USA
[3] Univ Paris Sadsy, CEA, NeuroSpin, Gif Sur Yvette, France
[4] Univ Paris Saclay, INRIA, Saclay, France
[5] Univ Washington, Dept Phys, Seattle, WA 98195 USA
[6] Harvard Med Sch, Massachusetts Gen Hosp, Athinoula A Martinos Ctr Biomed Imaging, Charlestown, MA USA
基金
欧洲研究理事会; 美国国家科学基金会;
关键词
electroencephalography (EEG); magnetoencephalography (MEG); neuroimaging; software; !text type='Python']Python[!/text; open-source; INDEPENDENT COMPONENT ANALYSIS; REGRESSION-BASED ESTIMATION; SURFACE-BASED ANALYSIS; HIGH-PASS FILTERS; EEG-DATA; FACE PERCEPTION; MEG-DATA; LOCALIZATION; ERP; RESOLUTION;
D O I
10.3389/fnins.2018.00530
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Cognitive neuroscience questions are commonly tested with experiments that involve a cohort of subjects. The cohort can consist of a handful of subjects for small studies to hundreds or thousands of subjects in open datasets. While there exist various online resources to get started with the analysis of magnetoencephalography (MEG) or electroencephalography (EEG) data, such educational materials are usually restricted to the analysis of a single subject. This is in part because data from larger group studies are harder to share, but also analyses of such data often require subject-specific decisions which are hard to document. This work presents the results obtained by the reanalysis of an open dataset from Wakeman and Henson (2015) using the MNE software package. The analysis covers preprocessing steps, quality assurance steps, sensor space analysis of evoked responses, source localization, and statistics in both sensor and source space. Results with possible alternative strategies are presented and discussed at different stages such as the use of high-pass filtering versus baseline correction, tSSS vs. SSS, the use of a minimum norm inverse vs. LCMV beamformer, and the use of univariate or multivariate statistics. This aims to provide a comparative study of different stages of M/EEG analysis pipeline on the same dataset, with open access to all of the scripts necessary to reproduce this analysis.
引用
收藏
页数:18
相关论文
共 81 条
[1]   Systematic biases in early ERP and ERF components as a result of high-pass filtering [J].
Acunzo, David J. ;
MacKenzie, Graham ;
van Rossum, Mark C. W. .
JOURNAL OF NEUROSCIENCE METHODS, 2012, 209 (01) :212-218
[2]   Mixed-effects modeling with crossed random effects for subjects and items [J].
Baayen, R. H. ;
Davidson, D. J. ;
Bates, D. M. .
JOURNAL OF MEMORY AND LANGUAGE, 2008, 59 (04) :390-412
[3]   Magnetoencephalography for brain electrophysiology and imaging [J].
Baillet, Sylvain .
NATURE NEUROSCIENCE, 2017, 20 (03) :327-339
[4]  
Bigdely-Shamlo N, 2013, IEEE GLOB CONF SIG, P1, DOI 10.1109/GlobalSIP.2013.6736796
[5]   Spatiotemporal Analysis of Multichannel EEG: CARTOOL [J].
Brunet, Denis ;
Murray, Micah M. ;
Michel, Christoph M. .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2011, 2011
[6]   Power failure: why small sample size undermines the reliability of neuroscience [J].
Button, Katherine S. ;
Ioannidis, John P. A. ;
Mokrysz, Claire ;
Nosek, Brian A. ;
Flint, Jonathan ;
Robinson, Emma S. J. ;
Munafo, Marcus R. .
NATURE REVIEWS NEUROSCIENCE, 2013, 14 (05) :365-376
[7]   On the plurality of (methodological) worlds: estimating the analytic flexibility of fMRI experiments [J].
Carp, Joshua .
FRONTIERS IN NEUROSCIENCE, 2012, 6
[8]   The secret lives of experiments: Methods reporting in the fMRI literature [J].
Carp, Joshua .
NEUROIMAGE, 2012, 63 (01) :289-300
[9]   MEG/EEG Source Reconstruction, Statistical Evaluation, and Visualization with NUTMEG [J].
Dalal, Sarang S. ;
Zumer, Johanna M. ;
Guggisberg, Adrian G. ;
Trumpis, Michael ;
Wong, Daniel D. E. ;
Sekihara, Kensuke ;
Nagarajan, Srikantan S. .
COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2011, 2011
[10]   Dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution imaging of cortical activity [J].
Dale, AM ;
Liu, AK ;
Fischl, BR ;
Buckner, RL ;
Belliveau, JW ;
Lewine, JD ;
Halgren, E .
NEURON, 2000, 26 (01) :55-67