Revisiting Graphene Oxide Chemistry via Spatially-Resolved Electron Energy Loss Spectroscopy

被引:64
作者
Tararan, Anna [1 ]
Zobelli, Alberto [1 ]
Benito, Ana M. [2 ]
Maser, Wolfgang K. [2 ]
Stephan, Odile [1 ]
机构
[1] Univ Paris 11, CNRS, Lab Phys Solides, UMR 8502, F-91405 Orsay, France
[2] Inst Carboquim ICB CSIC, Dept Chem Proc & Nanotechnol, C Miguel Luesma Castan 4, E-50018 Zaragoza, Spain
关键词
RAY-ABSORPTION-SPECTROSCOPY; GRAPHITE OXIDE; THERMAL REDUCTION; FUNCTIONAL-GROUPS; STRUCTURAL MODEL; ROOM-TEMPERATURE; RADIATION-DAMAGE; ATOMIC-STRUCTURE; EXCITONS; ORIGIN;
D O I
10.1021/acs.chemmater.6b00590
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The type and distribution of oxygen functional groups in graphene oxide (GO) and reduced graphene oxide (RGO) remain still a subject of great debate. Local analytic techniques are required to access the chemistry of these materials at a nanometric scale. Electron energy loss spectroscopy in a scanning transmission electron microscope can provide the suitable resolution, but GO and RGO are extremely sensitive to electron irradiation. In this work we employ an optimized experimental setup to reduce electron illumination below damage limit. GO oxygen maps obtained at a few nanometers scale show separated domains with different oxidation levels. The C/O ratio varies from about 4:1 to 1:1, the latter corresponding to a complete functionalization of the graphene flakes. In RGO the residual oxygen concentrates mostly in regions few tens of nanometers wide. Specific energy-loss near-edge structures are observed for different oxidation levels. By combining these findings with first-principles simulations we propose a model for the highly oxidized domains where graphene is fully functionalized by hydroxyl groups forming a 2D-sp(3) carbon network analogous to that of graphane.
引用
收藏
页码:3741 / 3748
页数:8
相关论文
共 62 条
[1]   Accuracy and precision in model based EELS quantification [J].
Bertoni, G. ;
Verbeeck, J. .
ULTRAMICROSCOPY, 2008, 108 (08) :782-790
[2]   Modeling of graphite oxide [J].
Boukhvalov, D. W. ;
Katsnelson, M. I. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (32) :10697-10701
[3]  
Brodie B.C., 1860, PHILOS T R SOC LONDO, V149, P249, DOI [10.1098/rspl.1859.0007, DOI 10.1098/RSTL.1859.0013]
[4]   PI-ASTERISK AND SIGMA-ASTERISK EXCITONS IN C-1S ABSORPTION OF GRAPHITE [J].
BRUHWILER, PA ;
MAXWELL, AJ ;
PUGLIA, C ;
NILSSON, A ;
ANDERSON, S ;
MARTENSSON, N .
PHYSICAL REVIEW LETTERS, 1995, 74 (04) :614-617
[5]  
Burdet P., 2015, HYPERSPY 0 8
[6]   NMR-Based Structural Modeling of Graphite Oxide Using Multidimensional 13C Solid-State NMR and ab Initio Chemical Shift Calculations [J].
Casabianca, Leah B. ;
Shaibat, Medhat A. ;
Cai, Weiwei W. ;
Park, Sungjin ;
Piner, Richard ;
Ruoff, Rodney S. ;
Ishii, Yoshitaka .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (16) :5672-5676
[7]   C-1s NEXAFS spectroscopy reveals chemical fractionation of humic acid by cation-induced coagulation [J].
Christl, Iso ;
Kretzschmar, Ruben .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2007, 41 (06) :1915-1920
[8]   The Effect of Thermal Reduction on the Photoluminescence and Electronic Structures of Graphene Oxides [J].
Chuang, C-H ;
Wang, Y-F. ;
Shao, Y-C. ;
Yeh, Y-C. ;
Wang, D-Y. ;
Chen, C-W. ;
Chiou, J. W. ;
Ray, Sekhar C. ;
Pong, W. F. ;
Zhang, L. ;
Zhu, J. F. ;
Guo, J. H. .
SCIENTIFIC REPORTS, 2014, 4
[9]   Electron energy-loss spectra of graphene oxide for the determination of oxygen functionalities [J].
D'Angelo, D. ;
Bongiorno, C. ;
Amato, M. ;
Deretzis, I. ;
La Magna, A. ;
Compagnini, G. ;
Spano, S. F. ;
Scalese, S. .
CARBON, 2015, 93 :1034-1041
[10]   Integration and bioactivity of hydroxyapatite grown on carbon nanotubes and graphene oxide [J].
David Nunez, J. ;
Benito, Ana M. ;
Gonzalez, Ramon ;
Aragon, Javier ;
Arenal, Raul ;
Maser, Wolfgang K. .
CARBON, 2014, 79 :590-604