Generalizations of the finite nonperiodic Toda lattice and its Darboux transformation

被引:0
作者
Li, Jian [1 ]
Li, Chuanzhong [2 ]
机构
[1] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamiltonian systems; Toda lattices; Darboux transformation; Lie algebra; Kac-van Moerbeke hierarchy; HIERARCHY; INTEGRABILITY; INTEGRATION; REDUCTIONS;
D O I
10.1088/1572-9494/ac01e5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we construct Hamiltonian systems for 2N particles whose force depends on the distances between the particles. We obtain the generalized finite nonperiodic Toda equations via a symmetric group transformation. The solutions of the generalized Toda equations are derived using the tau functions. The relationship between the generalized nonperiodic Toda lattices and Lie algebras is then be discussed and the generalized Kac-van Moerbeke hierarchy is split into generalized Toda lattices, whose integrability and Darboux transformation are studied.
引用
收藏
页数:13
相关论文
共 31 条
[21]  
Moser J., 1975, Dynamical Systems, Theory and Applications, P467
[22]   A TAU-FUNCTION OF THE FINITE NONPERIODIC TODA LATTICE [J].
NAKAMURA, Y .
PHYSICS LETTERS A, 1994, 195 (5-6) :346-350
[23]   MOMENT PROBLEM OF HAMBURGER, HIERARCHIES OF INTEGRABLE SYSTEMS, AND THE POSITIVITY OF TAU-FUNCTIONS [J].
NAKAMURA, Y ;
KODAMA, Y .
ACTA APPLICANDAE MATHEMATICAE, 1995, 39 (1-3) :435-443
[24]  
Razumov A.V., 1994, Commun. Anal. Geom., V2, P461
[25]  
Rusev P., 2010, FRACT CALC APPL ANAL, V13, P85
[26]   THE QR ALGORITHM AND SCATTERING FOR THE FINITE NON-PERIODIC TODA LATTICE [J].
SYMES, WW .
PHYSICA D, 1982, 4 (02) :275-280
[27]   VIBRATION OF A CHAIN WITH NONLINEAR INTERACTION [J].
TODA, M .
JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 1967, 22 (02) :431-&
[28]   Dynamic behaviors of mixed localized solutions for the three-component coupled Fokas-Lenells system [J].
Wang, Minmin ;
Chen, Yong .
NONLINEAR DYNAMICS, 2019, 98 (03) :1781-1794
[29]   Modulation instability, rogue waves and spectral analysis for the sixth -order nonlinear Schr?dinger equation [J].
Yue, Yunfei ;
Huang, Lili ;
Chen, Yong .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2020, 89
[30]   ON THE INTEGRABILITY OF CLASSICAL SPINOR MODELS IN TWO-DIMENSIONAL SPACE-TIME [J].
ZAKHAROV, VE ;
MIKHAILOV, AV .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1980, 74 (01) :21-40