Generalizations of the finite nonperiodic Toda lattice and its Darboux transformation

被引:0
作者
Li, Jian [1 ]
Li, Chuanzhong [2 ]
机构
[1] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
基金
中国国家自然科学基金;
关键词
Hamiltonian systems; Toda lattices; Darboux transformation; Lie algebra; Kac-van Moerbeke hierarchy; HIERARCHY; INTEGRABILITY; INTEGRATION; REDUCTIONS;
D O I
10.1088/1572-9494/ac01e5
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we construct Hamiltonian systems for 2N particles whose force depends on the distances between the particles. We obtain the generalized finite nonperiodic Toda equations via a symmetric group transformation. The solutions of the generalized Toda equations are derived using the tau functions. The relationship between the generalized nonperiodic Toda lattices and Lie algebras is then be discussed and the generalized Kac-van Moerbeke hierarchy is split into generalized Toda lattices, whose integrability and Darboux transformation are studied.
引用
收藏
页数:13
相关论文
共 31 条
[1]   Orthogonal Laurent polynomials on the unit circle, extended CMV ordering and 2D Toda type integrable hierarchies [J].
Alvarez-Fernandez, Carlos ;
Manas, Manuel .
ADVANCES IN MATHEMATICS, 2013, 240 :132-193
[2]  
Casian L., 2012, PAC J MATH, VXV, P77
[3]  
Casian L., 2002, CONT MATH, V301, P283
[4]   TODA LATTICE .2. EXISTENCE OF INTEGRALS [J].
FLASCHKA, H .
PHYSICAL REVIEW B, 1974, 9 (04) :1924-1925
[5]   TODA LATTICE .2. INVERSE-SCATTERING SOLUTION [J].
FLASCHKA, H .
PROGRESS OF THEORETICAL PHYSICS, 1974, 51 (03) :703-716
[6]   ON THE TODA AND KAC-VANMOERBEKE SYSTEMS [J].
GESZTESY, F ;
HOLDEN, H ;
SIMON, B ;
ZHAO, Z .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1993, 339 (02) :849-868
[7]   Nonabelian Toda theories from parafermionic reductions of the WZW model [J].
Gomes, JF ;
Sotkov, GM ;
Zimerman, AH .
ANNALS OF PHYSICS, 1999, 274 (02) :289-362
[8]   INTEGRALS OF TODA LATTICE [J].
HENON, M .
PHYSICAL REVIEW B, 1974, 9 (04) :1921-1923
[9]  
Hu HS., 2002, CONT MATH, V308, P179
[10]   Iso-spectral deformations of general matrix and their reductions on Lie algebras [J].
Kodama, Y ;
Ye, J .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1996, 178 (03) :765-788