On upper and lower bounds of the numerical radius and an equality condition

被引:204
作者
Yamazaki, Takeaki [1 ]
机构
[1] Kanagawa Univ, Dept Math, Yokohama, Kanagawa 2218686, Japan
关键词
numerical radius; Aluthge transform; normaloid operators;
D O I
10.4064/sm178-1-5
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an inequality relating the operator norm of T and the numerical radii of T and its Aluthge transform. It is a more precise estimate of the numerical radius than Kittaneh's result [Studia Math. 158 (2003)]. Then we obtain an equivalent condition for the numerical radius to be equal to half the operator norm.
引用
收藏
页码:83 / 89
页数:7
相关论文
共 11 条
[1]   Some generalized theorems on p-hyponormal operators [J].
Aluthge, A .
INTEGRAL EQUATIONS AND OPERATOR THEORY, 1996, 24 (04) :497-501
[3]  
[Anonymous], 1997, NUMERICAL RANGE
[4]   Inner derivations and norm equality [J].
Barraa, M ;
Boumazgour, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (02) :471-476
[5]  
FURUTA T., 2001, Invitation to Linear Operators
[6]  
HEINZ E., 1951, Math. Ann., V123, P415
[7]  
Jung IB, 2000, INTEGR EQUAT OPER TH, V37, P437
[8]   A numerical radius inequality and an estimate for the numerical radius of the Frobenius companion matrix [J].
Kittaneh, F .
STUDIA MATHEMATICA, 2003, 158 (01) :11-17
[9]   Numerical range of Aluthge transform of operator [J].
Wu, PY .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2002, 357 (1-3) :295-298
[10]   An expression of spectral radius via Aluthge transformation [J].
Yamazaki, T .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2002, 130 (04) :1131-1137