2-Arc-transitive regular covers of complete graphs having the covering transformation group Z3p

被引:44
作者
Du, SF
Kwak, JH [1 ]
Xu, MY
机构
[1] Capital Normal Univ, Dept Math, Beijing 100037, Peoples R China
[2] Pohang Univ Sci & Technol, Combinatorial & Computat Math Ctr, Pohang 790784, South Korea
[3] Peking Univ, Inst Math, Lab Math & Appl Math, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
arc-transitive graph; covering graph; lifting; 2-transitive group; linear group;
D O I
10.1016/j.jctb.2003.09.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A family of 2-arc-transitive regular covers of a complete graph is investigated. In this paper, we classify all such covering graphs satisfying the following two properties: (1) the covering transformation group is isomorphic to the elementary abelian p-group Z(P)(3), and (2) the group of fiber-preserving automorphisms acts 2-arc-transitively. As a result, new infinite families of 2-arc-transitive graphs are constructed. (C) 2004 Elsevier Inc. All rights reserved.
引用
收藏
页码:73 / 93
页数:21
相关论文
共 30 条
[1]   SUBGROUPS OF PSL(3,Q] FOR ODD Q [J].
BLOOM, DM .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 127 (01) :150-&
[2]   2-TRANSITIVE AND ANTI-FLAG TRANSITIVE COLLINEATION GROUPS OF FINITE PROJECTIVE SPACES [J].
CAMERON, PJ ;
KANTOR, WM .
JOURNAL OF ALGEBRA, 1979, 60 (02) :384-422
[3]   FINITE PERMUTATION-GROUPS AND FINITE SIMPLE-GROUPS [J].
CAMERON, PJ .
BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1981, 13 (JAN) :1-22
[4]   On 2-arc-transitive covers of complete graphs [J].
Du, SF ;
Marusic, D ;
Waller, AO .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1998, 74 (02) :276-290
[5]   Linear criteria for lifting automorphisms of elementary abelian regular coverings [J].
Du, SF ;
Kwak, JH ;
Xu, MY .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2003, 373 :101-119
[6]  
Fang XG, 1999, EUR J COMBIN, V20, P551
[7]   Finite two-arc transitive graphs admitting a Ree simple group [J].
Fang, XG ;
Praeger, CE .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (08) :3755-3769
[8]   Finite two-arc transitive graphs admitting a Suzuki simple group [J].
Fang, XG ;
Praeger, CE .
COMMUNICATIONS IN ALGEBRA, 1999, 27 (08) :3727-3754
[9]   On the automorphism groups of quasiprimitive almost simple graphs [J].
Fang, XG ;
Havas, G ;
Praeger, CE .
JOURNAL OF ALGEBRA, 1999, 222 (01) :271-283
[10]   On graphs admitting arc-transitive actions of almost simple groups [J].
Fang, XG ;
Praeger, CE .
JOURNAL OF ALGEBRA, 1998, 205 (01) :37-52