Submicron pillars of ferromagnetic shape memory alloys: Thermomechanical behavior

被引:7
作者
Aseguinolaza, Ivan R. [1 ]
Modin, Evgeny [2 ,3 ,4 ]
Chuvilin, Andrey [4 ,5 ]
Barandiaran, Jose M. [1 ]
Chernenko, Volodymyr A. [1 ,5 ]
机构
[1] Univ Basque Country, UPV EHU & BCMat, Bilbao 48080, Spain
[2] Kurchatov Inst, Natl Res Ctr, Moscow 123182, Russia
[3] Far Eastern Fed Univ, Vladivostok 690091, Russia
[4] CIC nanoGUNE, Donostia San Sebastian 20018, Spain
[5] Basque Fdn Sci, Ikerbasque, Bilbao 48013, Spain
关键词
Ferromagnetic shape memory alloys; Submicron pillars; Martensitic transformation; Superelastic effect; Shape memory effect; Rubber-like effect; NI-MN-GA; RUBBER-LIKE BEHAVIOR; MARTENSITIC-TRANSFORMATION; PSEUDOELASTICITY; SUPERELASTICITY; MOTION; STRAIN;
D O I
10.1016/j.apmt.2018.03.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Remarkable shape memory, superelasticity and rubber-like effects on the submicron scale have been disclosed in Ni-Fe(Co)-Ga and Ni-Mn-Ga ferromagnetic shape memory alloys. Arrays of pillars with the different cross-section and length have been prepared onto 001-oriented faces of the alloys single crystals and their thermomechanical behavior across the martensitic transformation was studied in the bending mode inside a scanning electron microscope. Recovered strains of up to 5% and 7% have been obtained as a result of shape memory and superelasticity effects, respectively. These findings are important for the development of novel micro/nanoelectromechanical systems to be controlled, contactless, by a magnetic field. (C) 2018 Published by Elsevier Ltd.
引用
收藏
页码:9 / 14
页数:6
相关论文
共 50 条
[31]   TEM studies on the microstructure in ferromagnetic shape memory alloys [J].
Murakami, Y. ;
Yano, T. ;
Shindo, D. .
MULTI-FUNCTIONAL MATERIALS AND STRUCTURES, PTS 1 AND 2, 2008, 47-50 :515-518
[32]   Superelasticity and shape memory effect in Cu-Al-Mn-V shape memory alloys [J].
Yang, Shuiyuan ;
Zhang, Fan ;
Wu, Jialin ;
Lu, Yong ;
Shi, Zhan ;
Wang, Cuiping ;
Liu, Xingjun .
MATERIALS & DESIGN, 2017, 115 :17-25
[33]   Magnetic shape-memory alloys: thermomechanical modelling and analysis [J].
Tomáš Roubíček ;
Ulisse Stefanelli .
Continuum Mechanics and Thermodynamics, 2014, 26 :783-810
[34]   A constitutive model for shape memory alloys accounting for thermomechanical coupling [J].
Morin, Claire ;
Moumni, Ziad ;
Zaki, Wael .
INTERNATIONAL JOURNAL OF PLASTICITY, 2011, 27 (05) :748-767
[35]   Aging response of shape memory behavior in γ-MnCu alloys [J].
Tsuchiya, K ;
Kawabata, O ;
Umemoto, M ;
Sato, H ;
Marukawa, K .
SHAPE MEMORY MATERIALS, 2000, 327-3 :469-472
[36]   A constitutive level-set model for ferromagnetic shape-memory alloys [J].
Arvanitakis, Antonios I. .
CONTINUUM MECHANICS AND THERMODYNAMICS, 2020, 32 (06) :1763-1778
[37]   Effect of Mn substitution on structural and magnetic properties of ferromagnetic shape memory alloys [J].
Mahalakshmi, C. ;
Kumar, S. Vinodh ;
Muthuraman, M. ;
Seenithurai, S. ;
Mahendran, M. .
MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2016, 23 (06) :631-635
[38]   Effect of Mn addition on the structural and magnetic properties of Fe-Pd ferromagnetic shape memory alloys [J].
Sanchez-Alarcos, V. ;
Recarte, V. ;
Perez-Landazabal, J. I. ;
Gonzalez, M. A. ;
Rodriguez-Velamazan, J. A. .
ACTA MATERIALIA, 2009, 57 (14) :4224-4232
[39]   Mechanistic simulation of thermomechanical behaviour of thermoelastic martensitic transformations in polycrystalline shape memory alloys [J].
Liu, Y ;
Favier, D ;
Orgeas, L .
JOURNAL DE PHYSIQUE IV, 2004, 115 :37-45
[40]   Research Status of Phase Transformation Behavior of High Entropy Shape Memory Alloys [J].
Zhao Yanchun ;
Feng Yuanfei ;
Feng Li ;
Li Wensheng ;
Shi Yapeng ;
Kou Shengzhong ;
Duan Wangchun .
RARE METAL MATERIALS AND ENGINEERING, 2024, 53 (03) :848-855