Roman {2}-domination

被引:139
作者
Chellali, Mustapha [1 ]
Haynes, Teresa W. [2 ,3 ]
Hedetniemi, Stephen T. [4 ]
McRae, Alice A. [5 ]
机构
[1] Univ Blida, Dept Math, LAMDA RO Lab, BP 270, Blida, Algeria
[2] Tennessee State Univ, Dept Math, Johnson City, TN 37614 USA
[3] Univ Johannesburg, Dept Math, Auckland Pk, South Africa
[4] Clemson Univ, Sch Comp, Clemson, SC 29634 USA
[5] Appalachian State Univ, Dept Comp Sci, Boone, NC 28608 USA
关键词
Roman domination; Roman {2)-domination; Weak Roman domination; 2-rainbow domination; 2-domination; 2-RAINBOW DOMINATION; RAINBOW DOMINATION; GRAPHS; BOUNDS; EMPIRE;
D O I
10.1016/j.dam.2015.11.013
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we initiate the study of a variant of Roman dominating functions. For a graph G = (V, E), a Roman {2}-dominating function f : V -> {0, 1, 2} has the property that for every vertex v is an element of V with f (v) = 0, either v is adjacent to a vertex assigned 2 under f, or v is adjacent to least two vertices assigned 1 under f. The weight of a Roman {2}-dominating function is the sum Sigma(v is an element of V)f (v), and the minimum weight of a Roman {2}-dominating function f is the Roman {2}-domination number. First, we present bounds relating the Roman {2}-domination number to some other domination parameters. In particular, we show that the Roman {2}-domination number is bounded above by the 2-rainbow domination number. Moreover, we prove that equality between these two parameters holds for trees and cactus graphs with no even cycles. Finally, we show that associated decision problem for Roman {2}-domination is NP-complete, even for bipartite graphs. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:22 / 28
页数:7
相关论文
共 16 条
  • [1] Bresar B, 2008, TAIWAN J MATH, V12, P213
  • [2] On the 2-rainbow domination in graphs
    Bresar, Bostjan
    Sumenjak, Tadeja Kraner
    [J]. DISCRETE APPLIED MATHEMATICS, 2007, 155 (17) : 2394 - 2400
  • [3] Burger A. P., 2004, Journal of Combinatorial Mathematics and Combinatorial Computing, V49, P159
  • [4] Chellali M, 2013, AUSTRALAS J COMB, V56, P85
  • [5] Bounds on weak roman and 2-rainbow domination numbers
    Chellali, Mustapha
    Haynes, Teresa W.
    Hedetniemi, Stephen T.
    [J]. DISCRETE APPLIED MATHEMATICS, 2014, 178 : 27 - 32
  • [6] Roman domination in graphs
    Cockayne, EJ
    Dreyer, PA
    Hedetniemi, SM
    Hedetniemi, ST
    [J]. DISCRETE MATHEMATICS, 2004, 278 (1-3) : 11 - 22
  • [7] Domke G. S., 1991, GRAPH THEORY COMBINA, V1, P371
  • [8] Fink J.F., 1985, Graph Theory with Applications to Algorithms and Computer Science, P283
  • [9] Haynes TW, 1998, Fundamentals of domination in graphs, V1st, DOI [DOI 10.1201/9781482246582, 10.1201/9781482246582]
  • [10] Hedetniemi ST., 2013, C NUMER, V217, P129