ON PAIRS OF POSITIVE SOLUTIONS FOR A CLASS OF QUASILINEAR ELLIPTIC PROBLEMS

被引:0
作者
Arruda, Lynnyngs Kelly [1 ]
Marques, Ilma [2 ]
机构
[1] Univ Fed Sao Carlos, Dept Matemat, BR-13565905 Sao Carlos, SP, Brazil
[2] CMCC Univ Fed ABC, BR-09210170 Santo Andre, SP, Brazil
关键词
REGULARITY; EXISTENCE; PRINCIPLE;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove, by using bifurcation theory, the existence of at least two positive solutions for the quasilinear problem -Delta(p)u = f (x, u) in Omega, u = 0 on partial derivative Omega, where N > p > 1 and Omega is a smooth bounded domain in R-N, N >= 2, and the non-linearity f is a locally Lipschitz continuous function, among other assumptions.
引用
收藏
页码:575 / 585
页数:11
相关论文
共 23 条
[1]  
Allegretto W, 1998, NONLINEAR ANAL-THEOR, V32, P819
[2]  
ANANE A, 1987, CR ACAD SCI I-MATH, V305, P725
[3]  
[Anonymous], 1977, Grundlagen der mathematischen Wissenschaften
[4]  
[Anonymous], 1934, Ann. Sci. cole Norm. Sup
[5]   A priori estimates and continuation methods for positive solutions of p-Laplace equations [J].
Azizieh, C ;
Clément, P .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2002, 179 (01) :213-245
[6]  
Correa F.J.S.A., 1992, DIFFERENTIAL INTEGRA, V5, P387
[7]  
Cuesta M, 1998, LECT NOTES PURE APPL, V194, P79
[8]   Regularity, monotonicity and symmetry of positive solutions of m-Laplace equations [J].
Damascelli, L ;
Sciunzi, B .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2004, 206 (02) :483-515
[9]  
Damascelli L., 1998, Ann. Sc. Norm. Super. Pisa, Cl. Sci., V26, P689
[10]  
de Paiva FO, 2006, DISCRETE CONT DYN-A, V15, P669