Product-system models for twisted C*-algebras of topological higher-rank graphs

被引:4
作者
Armstrong, Becky [1 ]
Brownlowe, Nathan [1 ]
机构
[1] Univ Sydney, Sch Math & Stat, Sydney, NSW 2006, Australia
基金
澳大利亚研究理事会;
关键词
C*-algebra; Product system; Topological higher-rank graph; Cuntz-Pimsner algebra; CROSSED-PRODUCTS; CSTAR-ALGEBRAS; KMS STATES;
D O I
10.1016/j.jmaa.2018.06.052
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We use product systems of C*-correspondences to introduce twisted C*-algebras of topological higher-rank graphs. We define the notion of a continuous T-valued 2-cocycle on a topological higher-rank graph, and present examples of such cocycles on large classes of topological higher-rank graphs. To every proper, source-free topological higher-rank graph Lambda, and continuous T-valued 2-cocycle c on Lambda, we associate a product system X of C-0(Lambda(0))-correspondences built from finite paths in Lambda. We define the twisted Cuntz-Krieger algebra C* (Lambda, c) to be the Cuntz Pimsner algebra O(X), and we define the twisted Toeplitz algebra TC* (Lambda, c) to be the Nica-Toeplitz algebra NT(X). We also associate to Lambda and c a product system Y of C-0(Lambda(infinity))-correspondences built from infinite paths. We prove that there is an embedding of TC* (Lambda, c) into NT(Y), and an isomorphism between C* (Lambda, c) and O(Y). (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:1443 / 1475
页数:33
相关论文
共 17 条
  • [2] TOPOLOGICAL REALIZATIONS AND FUNDAMENTAL GROUPS OF HIGHER-RANK GRAPHS
    Kaliszewski, S.
    Kumjian, Alex
    Quigg, John
    Sims, Aidan
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2016, 59 (01) : 143 - 168
  • [3] KMS states on the Toeplitz algebras of higher-rank graphs
    Christensen, Johannes
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 485 (02)
  • [4] Applications of entropy of product systems: Higher-rank graphs
    Kakariadis, Evgenios T. A.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2020, 594 : 124 - 157
  • [5] Equilibrium states on the Toeplitz algebras of small higher-rank graphs
    Huef, Astrid An
    Raeburn, Iain
    NEW YORK JOURNAL OF MATHEMATICS, 2020, 26 : 688 - 710
  • [6] Von Neumann algebras of strongly connected higher-rank graphs
    Laca, Marcelo
    Larsen, Nadia S.
    Neshveyev, Sergey
    Sims, Aidan
    Webster, Samuel B. G.
    MATHEMATISCHE ANNALEN, 2015, 363 (1-2) : 657 - 678
  • [7] SPECTRAL TRIPLES FOR HIGHER-RANK GRAPH C*-ALGEBRAS
    Farsi, Carla
    Gillaspy, Elizabeth
    Julien, Antoine
    Kang, Sooran
    Packer, Judith
    MATHEMATICA SCANDINAVICA, 2020, 126 (02) : 321 - 338
  • [8] Purely Atomic Representations of Higher-Rank Graph C*-Algebras
    Farsi, Carla
    Gillaspy, Elizabeth
    Jorgensen, Palle
    Kang, Sooran
    Packer, Judith
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2018, 90 (06)
  • [9] Monic representations of finite higher-rank graphs
    Farsi, Carla
    Gillaspy, Elizabeth
    Jorgensen, Palle
    Kang, Sooran
    Packer, Judith
    ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2020, 40 (05) : 1238 - 1267
  • [10] Spectral triples and wavelets for higher-rank graphs
    Farsi, Carla
    Gillaspy, Elizabeth
    Julien, Antoine
    Kang, Sooran
    Packer, Judith
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 482 (02)