Existence for the compressible magnetohydrodynamic equations with vacuum

被引:8
作者
Xi, Shuai [1 ]
Hao, Xingwen [2 ]
机构
[1] Shanghai Tiao Tong Univ, Sch Math Sci, Shanghai 200240, Peoples R China
[2] Weifang Univ, Sch Math & Informat, Weifang 261061, Shandong, Peoples R China
关键词
MHD; Classical solutions; Vacuum; NAVIER-STOKES EQUATIONS; CLASSICAL-SOLUTIONS; DEGENERATE VISCOSITIES; FLUIDS;
D O I
10.1016/j.jmaa.2017.04.007
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the 3-D compressible MHD equations without thermal conductivity are considered. The existence of unique local classical solutions to the initial boundary value problem with Dirichlet or Navier-Slip boundary condition is established when the initial data are arbitrarily large, contains vacuum and satisfies some initial layer compatibility condition. The initial density needs not to be bounded away from zero and may vanish in some open set. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:410 / 433
页数:24
相关论文
共 17 条
[1]   Semi-Galerkin approximation and strong solutions to the equations of the nonhomogeneous asymmetric fluids [J].
Boldrini, JL ;
Rojas-Medar, MA ;
Fernández-Cara, E .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2003, 82 (11) :1499-1525
[2]   Unique solvability of the initial boundary value problems for compressible viscous fluids [J].
Cho, Y ;
Choe, HJ ;
Kim, H .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2004, 83 (02) :243-275
[3]  
Cho Y., 2006, J DIFFERENTIAL EQUAT, V228
[4]   On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities [J].
Cho, YG ;
Kim, H .
MANUSCRIPTA MATHEMATICA, 2006, 120 (01) :91-129
[5]   Vanishing viscosity limit of the Navier-Stokes equations to the Euler equations for compressible fluid flow with far field vacuum [J].
Ding, Min ;
Zhu, Shengguo .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2017, 107 (03) :288-314
[6]   Strong solution to the compressible magnetohydrodynamic equations with vacuum [J].
Fan, Jishan ;
Yu, Wanghui .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2009, 10 (01) :392-409
[7]  
Galdi GP., 1994, An Introduction to the Mathematical Theory of the Navier-Stokes Equations
[8]  
Huang X. D., 2012, COMM PURE APPL MATH, V65
[9]   GLOBAL CLASSICAL SOLUTIONS TO 3D COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS WITH LARGE OSCILLATIONS AND VACUUM [J].
Li, Hai-Liang ;
Xu, Xinying ;
Zhang, Jianwen .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2013, 45 (03) :1356-1387
[10]   On Classical Solutions to 2D Shallow Water Equations with Degenerate Viscosities [J].
Li, Yachun ;
Pan, Ronghua ;
Zhu, Shengguo .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2017, 19 (01) :151-190