Amenable groups, topological entropy and Betti numbers

被引:6
作者
Elek, G [1 ]
机构
[1] Hungarian Acad Sci, Alfred Renyi Math Inst, H-1364 Budapest, Hungary
关键词
D O I
10.1007/BF02784519
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We investigate an analogue of the L-2-Betti numbers for amenable linear subshifts. The role of the von Neumann dimension shall be played by the topological entropy.
引用
收藏
页码:315 / 335
页数:21
相关论文
共 21 条
[11]   DIVISION RINGS AND GROUP VON-NEUMANN-ALGEBRAS [J].
LINNELL, PA .
FORUM MATHEMATICUM, 1993, 5 (06) :561-576
[12]  
Luck W, 1998, J REINE ANGEW MATH, V496, P213
[13]   APPROXIMATING L(2)-INVARIANTS BY THEIR FINITE-DIMENSIONAL ANALOGS [J].
LUCK, W .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 1994, 4 (04) :455-481
[14]  
MOULIN OJ, 1985, LECT NOTES MATH, V1115
[15]   ENTROPY AND ISOMORPHISM THEOREMS FOR ACTIONS OF AMENABLE-GROUPS [J].
ORNSTEIN, DS ;
WEISS, B .
JOURNAL D ANALYSE MATHEMATIQUE, 1987, 48 :1-142
[16]  
Pansu P., 1996, Riemannian geometry, V4, P53
[17]  
Passman D. S., 1977, Pure and Applied Mathematics
[18]  
ROSENBERG J, 1994, SPRINGER GRADUATE TE, V147
[19]  
Ruelle D., 1978, ENCY MATH ITS APPL, V5
[20]  
SCHMIDT K, 1995, PROGR MATH, V128