The effects of temperature and catalysts on the pyrolysis of industrial wastes (herb residue)

被引:125
作者
Wang, Pan [1 ]
Zhan, Sihui [1 ]
Yu, Hongbing [1 ]
Xue, Xufang [1 ]
Hong, Nan [1 ]
机构
[1] Nankai Univ, Coll Environm Sci & Engn, Tianjin 300071, Peoples R China
基金
中国国家自然科学基金;
关键词
Biomass; Herb residue; Catalytic pyrolysis; FIXED-BED REACTOR; BIOMASS PYROLYSIS; PRODUCTS; ALUMINA; OILS; CORNCOB; SAMPLES; OLIVE; ACIDS; CAKE;
D O I
10.1016/j.biortech.2009.12.082
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Pyrolysis of herb residue was investigated in a fixed-bed to determine the effects of pyrolysis temperature and catalysts (ZSM-5, Al-SBA-15 and alumina) on the products yields and the qualities of bio-oils. The results indicated that the maximum bio-oil yield of 34.26% was obtained at 450 degrees C with 10 wt.% alumina catalyst loaded. The pyrolytic oils were examined by ultimate analysis and calorific values determination, and the results indicated that the presence of all catalysts decreased the oxygen content of bio-oils and increased the calorific values. The order of the catalytic effect for upgrading the pyrolytic oil was Al2O3 > Al-SBA-15 > ZSM-5. The bio-oil with the lowest oxygen content (26.71%) and the highest calorific value (25.94 MJ kg(-1)) was obtained with 20 wt.% alumina catalyst loaded. Furthermore, the gas chromatography/mass spectrometry (GC/MS) was used in order to investigate the components of obtained pyrolytic oils. It was found that the alumina catalyst could clearly enhance the formation of aliphatics and aromatics. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:3236 / 3241
页数:6
相关论文
共 28 条
[1]   Pyrolysis of biomass in the presence of Al-MCM-41 type catalysts [J].
Adam, J ;
Blazsó, M ;
Mészarós, E ;
Stöcker, M ;
Nilsen, MH ;
Bouzga, A ;
Hustad, JE ;
Gronli, M ;
Oye, G .
FUEL, 2005, 84 (12-13) :1494-1502
[2]   Influence of temperature and particle size on the fixed bed pyrolysis of orange peel residues [J].
Aguiar, L. ;
Marquez-Montesinos, F. ;
Gonzalo, A. ;
Sanchez, J. L. ;
Arauzo, J. .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2008, 83 (01) :124-130
[3]   Evaluation of various types of Al-MCM-41 materials as catalysts in biomass pyrolysis for the production of bio-fuels and chemicals [J].
Antonakou, Eleni ;
Lappas, Angelos ;
Nilsen, Merete H. ;
Bouzga, Aud ;
Stocker, Michael .
FUEL, 2006, 85 (14-15) :2202-2212
[4]   Pyrolysis of two different biomass samples in a fixed-bed reactor combined with two different catalysts [J].
Ates, Funda ;
Putun, Ayse E. ;
Putun, Ersan .
FUEL, 2006, 85 (12-13) :1851-1859
[5]   Influence of temperature and alumina catalyst on pyrolysis of corncob [J].
Ates, Funda ;
Isikdag, M. Asli .
FUEL, 2009, 88 (10) :1991-1997
[6]   Investigations into the characteristics of oils produced from co-pyrolysis of biomass and tire [J].
Cao, Qing ;
Jin, Li'e ;
Bao, Weiren ;
Lv, Yongkang .
FUEL PROCESSING TECHNOLOGY, 2009, 90 (03) :337-342
[7]   Green gasoline by catalytic fast pyrolysis of solid biomass derived compounds [J].
Carlson, Torren R. ;
Vispute, Tushar R. ;
Huber, George W. .
CHEMSUSCHEM, 2008, 1 (05) :397-400
[8]   Lewis acids:: From conventional homogeneous to green homogeneous and heterogeneous catalysis [J].
Corma, A ;
García, H .
CHEMICAL REVIEWS, 2003, 103 (11) :4307-4365
[9]   INORGANIC SOLID ACIDS AND THEIR USE IN ACID-CATALYZED HYDROCARBON REACTIONS [J].
CORMA, A .
CHEMICAL REVIEWS, 1995, 95 (03) :559-614
[10]   The effects of different catalysts on the pyrolysis of industrial wastes (olive and hazelnut bagasse) [J].
Demiral, Ilknur ;
Sensoz, Sevgi .
BIORESOURCE TECHNOLOGY, 2008, 99 (17) :8002-8007