HILBERT - a MATLAB implementation of adaptive 2D-BEM

被引:0
|
作者
Aurada, Markus [1 ]
Ebner, Michael [1 ]
Feischl, Michael [1 ]
Ferraz-Leite, Samuel [3 ]
Fuehrer, Thomas [1 ]
Goldenits, Petra [1 ]
Karkulik, Michael [2 ]
Mayr, Markus [1 ]
Praetorius, Dirk [1 ]
机构
[1] Vienna Univ Technol, A-1040 Vienna, Austria
[2] Pontificia Univ Catolica Chile, Santiago, Chile
[3] Max Planck Inst Math Sci, D-04103 Leipzig, Germany
基金
奥地利科学基金会;
关键词
Boundary element methods; Adaptive mesh-refinement; A posteriori error estimation; MATLAB implementation; HYPERSINGULAR INTEGRAL-EQUATION; OPTIMAL CONVERGENCE RATE; AVERAGING TECHNIQUES; 2-LEVEL METHODS; BEM;
D O I
10.1007/s11075-013-9771-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We report on the Matlab program package HILBERT. It provides an easily-accessible implementation of lowest order adaptive Galerkin boundary element methods for the numerical solution of the Poisson equation in 2D. The library was designed to serve several purposes: The stable implementation of the integral operators may be used in research code. The framework of Matlab ensures usability in lectures on boundary element methods or scientific computing. Finally, we emphasize the use of adaptivity as general concept and for boundary element methods in particular. In this work, we summarize recent analytical results on adaptivity in the context of BEM and illustrate the use of HILBERT. Various benchmarks are performed to empirically analyze the performance of the proposed adaptive algorithms and to compare adaptive and uniform mesh-refinements. In particular, we do not only focus on mathematical convergence behavior but also on the usage of critical system resources such as memory consumption and computational time. In any case, the superiority of the proposed adaptive approach is empirically supported.
引用
收藏
页码:1 / 32
页数:32
相关论文
共 50 条
  • [1] HILBERT — a MATLAB implementation of adaptive 2D-BEM: HILBERT Is a Lovely Boundary Element Research Tool
    Aurada M.
    Ebner M.
    Feischl M.
    Ferraz-Leite S.
    Führer T.
    Goldenits P.
    Karkulik M.
    Mayr M.
    Praetorius D.
    Numerical Algorithms, 2014, 67 (1) : 1 - 32
  • [2] Formulation of mixed elements for the 2D-BEM
    Schimmanz, K
    Kost, A
    COMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING, 2004, 23 (04) : 866 - 875
  • [3] Wavelet Galerkin schemes for 2D-BEM
    Harbrecht, H
    Schneider, R
    PROBLEMS AND METHODS IN MATHEMATICAL PHYSICS: THE SIEGFRIED PROSSDORF MEMORIAL VOLUME, 2001, 121 : 221 - 260
  • [4] A COMPARISON BETWEEN ISOPARAMETRIC LAGRANGIAN ELEMENTS IN 2D-BEM
    DEB, A
    BANERJEE, PK
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1989, 28 (07) : 1539 - 1555
  • [5] Stable Implementation of Adaptive IGABEM in 2D in MATLAB
    Gantner, Gregor
    Praetorius, Dirk
    Schimanko, Stefan
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2022, 22 (03) : 563 - 590
  • [6] Adaptive Mesh Refinement in 2D-An Efficient Implementation in MATLAB
    Funken, Stefan A.
    Schmidt, Anja
    COMPUTATIONAL METHODS IN APPLIED MATHEMATICS, 2020, 20 (03) : 459 - 479
  • [7] On the adaptive coupling of FEM and BEM in 2–d–elasticity
    C. Carstensen
    S.A. Funken
    E.P. Stephan
    Numerische Mathematik, 1997, 77 : 187 - 221
  • [8] On the adaptive coupling of FEM and BEM in 2-d-elasticity
    Carstensen, C
    Funken, SA
    Stephan, EP
    NUMERISCHE MATHEMATIK, 1997, 77 (02) : 187 - 221
  • [9] On the adaptive coupling of FEM and BEM in 2-d-elasticity
    Carstensen, C.
    Funken, S. A.
    Stephan, E. P.
    Numerische Mathematik, 77 (02):
  • [10] A BEM implementation for 2D problems in plane orthotropic elasticity
    Kadioglu, N.
    Ataoglu, S.
    STRUCTURAL ENGINEERING AND MECHANICS, 2007, 26 (05) : 591 - 615