A nanoarchitectured cermet composite with extremely low Ni content for stable high-performance solid oxide fuel cells

被引:17
作者
Park, Jung Hoon [1 ,2 ]
Lee, Jong-Ho [1 ,4 ]
Yoon, Kyung Joong [1 ]
Kim, Hyoungchul [1 ]
Ji, Ho-Il [1 ,4 ]
Yang, Sungeun [1 ]
Park, Sangbaek [1 ,4 ]
Han, Seung Min [2 ]
Son, Ji-Won [1 ,3 ]
机构
[1] Korea Inst Sci & Technol KIST, Ctr Energy Mat Res, Seoul 02792, South Korea
[2] Korea Adv Inst Sci & Technol KAIST, Dept Mat Sci & Engn, Daejeon 34141, South Korea
[3] Korea Univ, KU KIST GREEN SCH, Grad Sch Energy & Environm, Seoul 02841, South Korea
[4] Korea Univ Sci & Technol UST, KIST Sch, Nanomat Sci & Engn, Seoul 02792, South Korea
基金
新加坡国家研究基金会;
关键词
solid oxide fuel cells; anodes; reduction-oxidation cycles; nanostructures; Ni-GDC;
D O I
10.1016/j.actamat.2020.116580
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A strategy for improving the stability of nickel-based solid oxide fuel cell (SOFC) anodes via compositional and microstructural engineering is presented. Ni content was reduced to 2 vol%, and nanosized Ni particles were uniformly dispersed in a mixed ionic-electronic conducting matrix comprising gadoliniumdoped ceria (GDC) using a thin-film technique. Remarkable stability with no performance deterioration even after 100 reduction-oxidation cycles could be observed for the optimized nanostructured anodes. Cell performance at 500 degrees C was enhanced, exceeding 650 mW/cm(2). This study offers valuable insights for enhancing the durability, performance, and productivity of SOFCs. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Sarantaridis D, 2007, FUEL CELLS, V7, P246, DOI [10.1002/fuce.200600028, 10.1002/Fuce.200600028]
  • [42] Nickel coarsening in annealed Ni/8YSZ anode substrates for solid oxide fuel cells -: In memoriam to Professor H.!Tagawa
    Simwonis, D
    Tietz, F
    Stöver, D
    [J]. SOLID STATE IONICS, 2000, 132 (3-4) : 241 - 251
  • [43] Materials for fuel-cell technologies
    Steele, BCH
    Heinzel, A
    [J]. NATURE, 2001, 414 (6861) : 345 - 352
  • [44] Discovery and characterization of novel oxide anodes for solid oxide fuel cells
    Tao, SW
    Irvine, JTS
    [J]. CHEMICAL RECORD, 2004, 4 (02) : 83 - 95
  • [45] Tsuchiya M, 2011, NAT NANOTECHNOL, V6, P282, DOI [10.1038/NNANO.2011.43, 10.1038/nnano.2011.43]
  • [46] Lowering the Temperature of Solid Oxide Fuel Cells
    Wachsman, Eric D.
    Lee, Kang Taek
    [J]. SCIENCE, 2011, 334 (6058) : 935 - 939
  • [47] Weissman J. G., 2006, U. S. Patent, Patent No. 20060035122
  • [48] Enhancing Ni-YSZ Anode Resilience to Environmental Redox Stress with Aluminum Titanate Secondary Phases
    Welander, Martha M.
    Zachariasen, Marley S.
    Sofie, Stephen W.
    Walker, Robert A.
    [J]. ACS APPLIED ENERGY MATERIALS, 2018, 1 (11): : 6295 - 6302
  • [49] Wynblatt P., 1975, PROG SOLID STATE CH, V9, P21, DOI [DOI 10.1016/0079-6786(75)90013-8, 10.1016/0079-6786(75)90013-8, 10.1016/0079-6786, DOI 10.1016/0079-6786]
  • [50] Enhancing coking resistance of Ni/YSZ electrodes: In situ characterization, mechanism research, and surface engineering
    Yue, Wangxu
    Li, Yifeng
    Zheng, Yun
    Wu, Tong
    Zhao, Chenhuan
    Zhao, Jia
    Geng, Ga
    Zhang, Wenqiang
    Chen, Jing
    Zhu, Jianxin
    Yu, Bo
    [J]. NANO ENERGY, 2019, 62 : 64 - 78