A nanoarchitectured cermet composite with extremely low Ni content for stable high-performance solid oxide fuel cells

被引:17
作者
Park, Jung Hoon [1 ,2 ]
Lee, Jong-Ho [1 ,4 ]
Yoon, Kyung Joong [1 ]
Kim, Hyoungchul [1 ]
Ji, Ho-Il [1 ,4 ]
Yang, Sungeun [1 ]
Park, Sangbaek [1 ,4 ]
Han, Seung Min [2 ]
Son, Ji-Won [1 ,3 ]
机构
[1] Korea Inst Sci & Technol KIST, Ctr Energy Mat Res, Seoul 02792, South Korea
[2] Korea Adv Inst Sci & Technol KAIST, Dept Mat Sci & Engn, Daejeon 34141, South Korea
[3] Korea Univ, KU KIST GREEN SCH, Grad Sch Energy & Environm, Seoul 02841, South Korea
[4] Korea Univ Sci & Technol UST, KIST Sch, Nanomat Sci & Engn, Seoul 02792, South Korea
基金
新加坡国家研究基金会;
关键词
solid oxide fuel cells; anodes; reduction-oxidation cycles; nanostructures; Ni-GDC;
D O I
10.1016/j.actamat.2020.116580
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A strategy for improving the stability of nickel-based solid oxide fuel cell (SOFC) anodes via compositional and microstructural engineering is presented. Ni content was reduced to 2 vol%, and nanosized Ni particles were uniformly dispersed in a mixed ionic-electronic conducting matrix comprising gadoliniumdoped ceria (GDC) using a thin-film technique. Remarkable stability with no performance deterioration even after 100 reduction-oxidation cycles could be observed for the optimized nanostructured anodes. Cell performance at 500 degrees C was enhanced, exceeding 650 mW/cm(2). This study offers valuable insights for enhancing the durability, performance, and productivity of SOFCs. (C) 2020 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Three-Dimensional Nanostructured Bilayer Solid Oxide Fuel Cell with 1.3 W/cm2 at 450 °C
    An, Jihwan
    Kim, Young-Beom
    Park, Joonsuk
    Guer, Turgut M.
    Prinz, Fritz B.
    [J]. NANO LETTERS, 2013, 13 (09) : 4551 - 4555
  • [2] Angelis SD, 2020, MAT CHARACT, V162
  • [3] Advanced anodes for high-temperature fuel cells
    Atkinson, A
    Barnett, S
    Gorte, RJ
    Irvine, JTS
    Mcevoy, AJ
    Mogensen, M
    Singhal, SC
    Vohs, J
    [J]. NATURE MATERIALS, 2004, 3 (01) : 17 - 27
  • [4] Progress and outlook for solid oxide fuel cells for transportation applications
    Boldrin, Paul
    Brandon, Nigel P.
    [J]. NATURE CATALYSIS, 2019, 2 (07) : 571 - 577
  • [5] Ni infiltration as a possible solution to the redox problem of SOFC anodes
    Busawon, A. N.
    Sarantaridis, D.
    Atkinson, A.
    [J]. ELECTROCHEMICAL AND SOLID STATE LETTERS, 2008, 11 (10) : B186 - B189
  • [6] Optimization of Redox Stable Ni-YSZ Anodes for SOFCs by Two-Step Infiltration
    Buyukaksoy, Aligul
    Petrovsky, Vladimir
    Dogan, Fatih
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2012, 159 (12) : F841 - F848
  • [7] The reduction of nickel-zirconia cermet anodes and the effects on supported thin electrolytes
    Cassidy, M
    Lindsay, G
    Kendall, K
    [J]. JOURNAL OF POWER SOURCES, 1996, 61 (1-2) : 189 - 192
  • [8] Low temperature solid oxide fuel cells with hierarchically porous cathode nano-network
    Chen, Yu
    Lin, Ye
    Zhang, Yanxiang
    Wang, Siwei
    Su, Dong
    Yang, Zhibin
    Han, Minfang
    Chen, Fanglin
    [J]. NANO ENERGY, 2014, 8 : 25 - 33
  • [9] Electrochemical analysis of high-performance protonic ceramic fuel cells based on a columnar-structured thin electrolyte
    Choi, Sung Min
    An, Hyegsoon
    Yoon, Kyung Joong
    Kim, Byung-Kook
    Lee, Hae-Weon
    Son, Ji-Won
    Kim, Hyoungchul
    Shin, Dongwook
    Ji, Ho-Il
    Lee, Jong-Ho
    [J]. APPLIED ENERGY, 2019, 233 : 29 - 36
  • [10] Enhancement of high temperature metallic catalysts: Aluminum titanate in the nickel-zirconia system
    Driscoll, D. R.
    McIntyre, M. D.
    Welander, M. M.
    Sofie, S. W.
    Walker, R. A.
    [J]. APPLIED CATALYSIS A-GENERAL, 2016, 527 : 36 - 44