A link between quasi-cyclic codes and convolutional codes

被引:41
作者
Esmaeili, M
Gulliver, TA
Secord, NP
Mahmoud, SA
机构
[1] Carleton Univ, Dept Math & Stat, Ottawa, ON K1S 5B6, Canada
[2] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON K1S 5B6, Canada
[3] Commun Res Ctr, Ottawa, ON K2H 8S2, Canada
关键词
convolutional codes; quasi-cyclic codes; Reed-Muller codes;
D O I
10.1109/18.651076
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a quasi-cyclic code with minimum Hamming distance d, a set of convolutional codes is derived with free distance equal to d. It is shown that an increase in the rate of these codes results in a decrease in the memory length. The connection between these codes is illustrated with several well-known quasi-cyclic codes. The free distance of some partial unit memory convolutional codes can be determined using the results in this correspondence.
引用
收藏
页码:431 / 435
页数:5
相关论文
共 14 条
[1]   SOME RESULTS ON QUASI-CYCLIC CODES [J].
CHEN, CL ;
PETERSON, WW .
INFORMATION AND CONTROL, 1969, 15 (05) :407-&
[2]   Quasi-cyclic structure of Reed-Muller codes and their smallest regular trellis diagram [J].
Esmaeili, M ;
Gulliver, TA ;
Secord, NP .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1997, 43 (03) :1040-1052
[3]  
Esmaeili M, 1995, PROCEEDINGS 1995 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, P348, DOI 10.1109/ISIT.1995.550335
[4]  
ESMAEILI M, 1996, UNPUB IEEE T INFORM
[5]  
ESMAEILI M, 1995, SCE9524 CARL U DEP S
[6]  
ESMAEILI M, 1996, SPRINGER VERLAG LECT, V1133, P130
[7]  
FORNEY GD, 1970, UNPUB WHY QUASI CYCL
[8]  
FORNEY GD, 1970, IEEE T INFORM THEORY, V16, P268
[9]   GILBERT-VARSHAMOV BOUND FOR QUASI-CYCLIC CODES OF RATE 1-2 [J].
KASAMI, T .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1974, 20 (05) :679-679
[10]  
Levy Y, 1993, DIMACS SER DISCRETE, V14, P189