Spatially strongly confined atomic excitation via a two dimensional stimulated Raman adiabatic passage

被引:13
作者
Hamedi, Hamid R. [1 ]
Zlabys, Giedrius [1 ]
Ahufinger, Veronica [2 ]
Halfmann, Thomas [3 ]
Mompart, Jordi [2 ]
Juzeliunas, Gediminas [1 ]
机构
[1] Vilnius Univ, Inst Theoret Phys & Astron, Sauletekio 3, LT-10257 Vilnius, Lithuania
[2] Univ Autonoma Barcelona, Dept Fis, E-08193 Bellaterra, Spain
[3] Tech Univ Darmstadt, Inst Angew Phys, Hsch Str 6, D-64289 Darmstadt, Germany
关键词
POPULATION TRANSFER; MATLAB TOOLBOX; LOCALIZATION; MICROSCOPY; SOLITONS; VORTICES; DYNAMICS; GPELAB; VORTEX; SYSTEM;
D O I
10.1364/OE.447397
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider a method of sub-wavelength superlocalization and patterning of atomic matter waves via a two dimensional stimulated Raman adiabatic passage (2D STIRAP) process. An atom initially prepared in its ground level interacts with a doughnut-shaped optical vortex pump beam and a traveling wave Stokes laser beam with a constant (top-hat) intensity profile in space. The beams are sent in a counter-intuitive temporal sequence, in which the Stokes pulse precedes the pump pulse. The atoms interacting with both the traveling wave and the vortex beam are transferred to a final state through the 2D STIRAP, while those located at the core of the vortex beam remain in the initial state, creating a super-narrow nanometer scale atomic spot in the spatial distribution of ground state atoms. By numerical simulations we show that the 2D STIRAP approach outperforms the established method of coherent population trapping, yielding much stronger confinement of atomic excitation. Numerical simulations of the Gross-Pitaevskii equation show that using such a method one can create 2D bright and dark solitonic structures in trapped Bose-Einstein condensates (BECs). The method allows one to circumvent the restriction set by the diffraction limit inherent to conventional methods for formation of localized solitons, with a full control over the position and size of nanometer resolution defects. (C) 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:13915 / 13930
页数:16
相关论文
共 59 条
  • [1] Subwavelength atom localization via coherent population trapping
    Agarwal, G. S.
    Kapale, K. T.
    [J]. JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2006, 39 (17) : 3437 - 3446
  • [2] The orbital angular momentum of light
    Allen, L
    Padgett, MJ
    Babiker, M
    [J]. PROGRESS IN OPTICS, VOL XXXIX, 1999, 39 : 291 - 372
  • [3] EXPERIMENTAL-METHOD FOR OBSERVATION OF RF TRANSITIONS AND LASER BEAT RESONANCES IN ORIENTED NA VAPOR
    ALZETTA, G
    GOZZINI, A
    MOI, L
    ORRIOLS, G
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1976, 36 (01): : 5 - 20
  • [4] Quantized rotation of atoms from photons with orbital angular momentum
    Andersen, M. F.
    Ryu, C.
    Clade, Pierre
    Natarajan, Vasant
    Vaziri, A.
    Helmerson, K.
    Phillips, W. D.
    [J]. PHYSICAL REVIEW LETTERS, 2006, 97 (17)
  • [5] Vortex precession in Bose-Einstein condensates: Observations with filled and empty cores
    Anderson, BP
    Haljan, PC
    Wieman, CE
    Cornell, EA
    [J]. PHYSICAL REVIEW LETTERS, 2000, 85 (14) : 2857 - 2860
  • [6] Optical generation of vortices in trapped Bose-Einstein condensates
    Andrelczyk, G
    Brewczyk, M
    Dobrek, L
    Gajda, M
    Lewenstein, M
    [J]. PHYSICAL REVIEW A, 2001, 64 (04): : 10
  • [7] Direct, nondestructive observation of a bose condensate
    Andrews, MR
    Mewes, MO
    vanDruten, NJ
    Durfee, DS
    Kurn, DM
    Ketterle, W
    [J]. SCIENCE, 1996, 273 (5271) : 84 - 87
  • [8] GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations II: Dynamics and stochastic simulations
    Antoine, Xavier
    Duboscq, Romain
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2015, 193 : 95 - 117
  • [9] GPELab, a Matlab toolbox to solve Gross-Pitaevskii equations I: Computation of stationary solutions
    Antoine, Xavier
    Duboscq, Romain
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 2014, 185 (11) : 2969 - 2991
  • [10] Propagation dynamics of optical vortices due to Gouy phase
    Baumann, S. M.
    Kalb, D. M.
    MacMillan, L. H.
    Galvez, E. J.
    [J]. OPTICS EXPRESS, 2009, 17 (12): : 9818 - 9827