Finding a Maximum Matching in a Sparse Random Graph in O(n) Expected Time

被引:14
作者
Chebolu, Prasad [1 ]
Frieze, Alan [1 ]
Melsted, Pall [1 ]
机构
[1] Carnegie Mellon Univ, Dept Math Sci, Pittsburgh, PA 15213 USA
基金
美国国家科学基金会;
关键词
Algorithms; Theory; Random graphs; matching; ALGORITHMS;
D O I
10.1145/1734213.1734218
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
We present a linear expected time algorithm for finding maximum cardinality matchings in sparse random graphs. This is optimal and improves on previous results by a logarithmic factor.
引用
收藏
页数:27
相关论文
共 10 条
[1]  
[Anonymous], 1980, EUR J COMBIN
[2]  
[Anonymous], P 22 ANN IEEE S FDN
[3]  
Aronson J, 1998, RANDOM STRUCT ALGOR, V12, P111, DOI 10.1002/(SICI)1098-2418(199803)12:2<111::AID-RSA1>3.0.CO
[4]  
2-#
[5]   Matching algorithms are fast in sparse random graphs [J].
Bast, H ;
Mehlhorn, K ;
Schäfer, G ;
Tamaki, H .
THEORY OF COMPUTING SYSTEMS, 2006, 39 (01) :3-14
[6]   PATHS TREES AND FLOWERS [J].
EDMONDS, J .
CANADIAN JOURNAL OF MATHEMATICS, 1965, 17 (03) :449-&
[7]  
FRIEZE AM, 2004, TRENDS MATH, V17, P95
[8]  
MCKAY BD, 1985, ARS COMBINATORIA, V19A, P15
[9]  
Micali S., 1980, 21st Annual Symposium on Foundations of Computer Science, P17
[10]   AVERAGE-CASE ANALYSIS OF ALGORITHMS FOR MATCHINGS AND RELATED PROBLEMS [J].
MOTWANI, R .
JOURNAL OF THE ASSOCIATION FOR COMPUTING MACHINERY, 1994, 41 (06) :1329-1356