A paradox in the global description of the multiverse

被引:51
作者
Bousso, Raphael [1 ]
Freivogel, Ben
机构
[1] Univ Calif Berkeley, Ctr Theoret Phys, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Lawrence Berkeley Lab, Berkeley, CA 94720 USA
关键词
dS vacua in string theory; superstring vacua;
D O I
10.1088/1126-6708/2007/06/018
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
We use an argument by Page to exhibit a paradox in the global description of the multiverse: ther overwhelming majority of observers arise from quantum fluctuations and not by conventional evolution. Unless we are extremely atypical, this contradicts observation. The paradox does not arise in the local description of the multiverse, but similar arguments yield interesting constraints on the maximum lifetime of metastable vacua.
引用
收藏
页数:8
相关论文
共 14 条
[1]   Quantization of four-form fluxes and dynamical neutralization of the cosmological constant [J].
Bousso, R ;
Polchinski, J .
JOURNAL OF HIGH ENERGY PHYSICS, 2000, (06) :1-25
[2]  
Bousso R, 2000, J HIGH ENERGY PHYS
[3]   Bekenstein bounds in de Sitter and flat space [J].
Bousso, R .
JOURNAL OF HIGH ENERGY PHYSICS, 2001, (04) :XXXXV-14
[4]   Holographic probabilities in eternal inflation [J].
Bousso, Raphael .
PHYSICAL REVIEW LETTERS, 2006, 97 (19)
[5]  
Dyson L, 2002, J HIGH ENERGY PHYS
[6]   Counting pockets with world lines in eternal inflation [J].
Easther, R ;
Lim, EA ;
Martin, MR .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2006, (03)
[7]   Density perturbations and the cosmological constant from inflationary landscapes [J].
Feldstein, B ;
Hall, LJ ;
Watari, T .
PHYSICAL REVIEW D, 2005, 72 (12)
[8]   Probabilities in the inflationary multiverse [J].
Garriga, J ;
Schwartz-Perlov, D ;
Vilenkin, A ;
Winitzki, S .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2006, (01)
[9]  
Garriga J, 2001, PHYS REV D, V64, DOI 10.1103/PhysRevD.64.023507
[10]   FROM THE BIG-BANG-THEORY TO THE THEORY OF A STATIONARY UNIVERSE [J].
LINDE, A ;
LINDE, D ;
MEZHLUMIAN, A .
PHYSICAL REVIEW D, 1994, 49 (04) :1783-1826