Controlling Polymer Trans location and Ion Transport via Charge Correlations

被引:33
作者
Buyukdagli, Sahin [1 ,2 ]
Ala-Nissila, T. [3 ,4 ,5 ]
机构
[1] CNRS, USR3078, Inst Rech Interdisciplinaire, F-59658 Villeneuve Dascq, France
[2] Univ Lille 1, F-59658 Villeneuve Dascq, France
[3] Aalto Univ, Sch Sci, Dept Appl Phys, FI-00076 Espoo, Finland
[4] Aalto Univ, Sch Sci, COMP Ctr Excellence, FI-00076 Espoo, Finland
[5] Brown Univ, Dept Phys, Providence, RI 02912 USA
基金
芬兰科学院;
关键词
DNA; TRANSLOCATION; NANOPORES; PORE; IDENTIFICATION; FLUCTUATIONS;
D O I
10.1021/la503327j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We develop a correlation-corrected transport theory in order to predict ionic and polymer transport properties of membrane nanopores under physical conditions where mean-field electrostatics breaks down. The experimentally observed low KCl conductivity of open a-hemolysin pores is quantitatively explained by the presence of surface polarization effects. Upon the penetration of a DNA molecule into the pore, these polarization forces combined with the electroneutrality of DNA sets a lower boundary for the ionic current, explaining the weak salt dependence of blocked pore conductivities at dilute ion concentrations. The addition of multivalent counterions to the solution results in the reversal of the polymer charge and the direction of the electroosmotic flow. With trivalent spermidine or quadrivalent spermine molecules, the charge inversion is strong enough to stop the translocation of the polymer and to reverse its motion. This mechanism can be used efficiently in translocation experiments in order to improve the accuracy of DNA sequencing by minimizing the translocation velocity of the polymer.
引用
收藏
页码:12907 / 12915
页数:9
相关论文
共 40 条
[1]   Polyelectrolyte Decomplexation via Addition of Salt: Charge Correlation Driven Zipper [J].
Antila, Hanne S. ;
Sammalkorpi, Maria .
JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (11) :3226-3234
[2]   Toward single molecule DNA sequencing:: Direct identification of ribonucleoside and deoxyribonucleoside 5′-monophosphates by using an engineered protein nanopore equipped with a molecular adapter [J].
Astier, Y ;
Braha, O ;
Bayley, H .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2006, 128 (05) :1705-1710
[3]   Self-energy-limited ion transport in subnanometer channels [J].
Bonthuis, Douwe Jan ;
Zhang, Jingshan ;
Hornblower, Breton ;
Mathe, Jerome ;
Shklovskii, Boris I. ;
Meller, Amit .
PHYSICAL REVIEW LETTERS, 2006, 97 (12)
[4]   Dipolar correlations in structured solvents under nanoconfinement [J].
Buyukdagli, Sahin ;
Blossey, Ralf .
JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (23)
[5]   Electrostatic correlations on the ionic selectivity of cylindrical membrane nanopores [J].
Buyukdagli, Sahin ;
Ala-Nissila, T. .
JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (06)
[6]   DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels [J].
Chang, H ;
Kosari, F ;
Andreadakis, G ;
Alam, MA ;
Vasmatzis, G ;
Bashir, R .
NANO LETTERS, 2004, 4 (08) :1551-1556
[7]  
Clarke J, 2009, NAT NANOTECHNOL, V4, P265, DOI [10.1038/NNANO.2009.12, 10.1038/nnano.2009.12]
[8]   Nanopore DNA sequencing with MspA [J].
Derrington, Ian M. ;
Butler, Tom Z. ;
Collins, Marcus D. ;
Manrao, Elizabeth ;
Pavlenok, Mikhail ;
Niederweis, Michael ;
Gundlach, Jens H. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2010, 107 (37) :16060-16065
[9]   Smoluchowski equation and the colloidal charge reversal [J].
Diehl, Alexandre ;
Levin, Yan .
JOURNAL OF CHEMICAL PHYSICS, 2006, 125 (05)
[10]   Colloidal charge renormalization in suspensions containing multivalent electrolyte [J].
dos Santos, Alexandre P. ;
Diehl, Alexandre ;
Levin, Yan .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (10)