Convex body domination and weighted estimates with matrix weights

被引:38
作者
Nazarov, Fedor [1 ]
Petermichl, Stefanie [2 ]
Treil, Sergei [3 ]
Volberg, Alexander [4 ]
机构
[1] Kent State Univ, Dept Math, Kent, OH 44242 USA
[2] Univ Paul Sabatier, Dept Math, Toulouse, France
[3] Brown Univ, Dept Math, Providence, RI 02912 USA
[4] Michigan Sate Univ, Dept Math, E Lansing, MI 48823 USA
基金
美国国家科学基金会;
关键词
Matrix weights martingale transform; Matrix weighted maximal function; HILBERT TRANSFORM; SHARP;
D O I
10.1016/j.aim.2017.08.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We introduce the so called convex body valued sparse operators, which generalize the notion of sparse operators to the case of spaces of vector valued functions. We prove that Calderon-Zygmund operators as well as Haar shifts and paraproducts can be dominated by such operators. By estimating sparse operators we obtain weighted estimates with matrix weights. We get two weight A(2)-A(infinity), estimates, that in the one weight case give us the estimate parallel to T parallel to(L)2((w)-> L)2((W)) <= C[W](A2)(1/2)[W](A infinity) <= C[W](A2)(3/2) where T is either Calderon-Zygmund operator (with modulus of continuity satisfying the Dini condition), or a Haar shift or a paraproduct. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:279 / 306
页数:28
相关论文
共 18 条
[1]   Bounds for the Hilbert transform with matrix A2 weights [J].
Bickel, Kelly ;
Petermichl, Stefanie ;
Wick, Brett D. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (05) :1719-1743
[2]   Vector A2 weights and a Hardy-Littlewood maximal function [J].
Christ, M ;
Goldberg, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 353 (05) :1995-2002
[3]  
Hytonen T., ARXIV12072394V2, P1
[4]   Sharp weighted estimates for dyadic shifts and the A2 conjecture [J].
Hytonen, Tuomas ;
Perez, Carlos ;
Treil, Sergei ;
Volberg, Alexander .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2014, 687 :43-86
[5]   The sharp weighted bound for general Calderon-Zygmund operators [J].
Hytonen, Tuomas P. .
ANNALS OF MATHEMATICS, 2012, 175 (03) :1473-1506
[6]  
Lacey M., ARXIV150105818V7, P1
[7]   Sharp A2 inequality for Haar shift operators [J].
Lacey, Michael T. ;
Petermichl, Stefanie ;
Reguera, Maria Carmen .
MATHEMATISCHE ANNALEN, 2010, 348 (01) :127-141
[8]  
Lai J., 2014, ARXIV14115408MATHCA
[9]  
Lerner A., 2015, ARXIV150805639MATHCA
[10]  
Lerner AK, 2016, NEW YORK J MATH, V22, P341