The supersymmetry of the (1+1)-dimensional oscillators in general relativity

被引:3
作者
Cotaescu, II [1 ]
Cotaescu, II [1 ]
机构
[1] W Univ Timisoara, RO-1900 Timisoara, Romania
来源
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL | 2000年 / 33卷 / 35期
关键词
D O I
10.1088/0305-4470/33/35/305
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The quantum modes of a new family of relativistic oscillators are studied by using the supersymmetry and shape invariance in a version suitable for (1 + 1)-dimensional relativistic systems. In this way one obtains the Rodrigues formulae of the normalized energy eigenfunctions of the discrete spectra and the corresponding raising and lowering operators.
引用
收藏
页码:6159 / 6171
页数:13
相关论文
共 22 条
[1]  
Abramowitz M., 1964, HDB MATH FUNCTIONS
[2]   QUANTIZATION AS A CONSEQUENCE OF THE SYMMETRY GROUP - AN APPROACH TO GEOMETRIC-QUANTIZATION [J].
ALDAYA, V ;
DEAZCARRAGA, JA .
JOURNAL OF MATHEMATICAL PHYSICS, 1982, 23 (07) :1297-1305
[3]   SYMMETRY AND QUANTIZATION - HIGHER-ORDER POLARIZATION AND ANOMALIES [J].
ALDAYA, V ;
NAVARROSALAS, J ;
BISQUERT, J ;
LOLL, R .
JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (09) :3087-3097
[4]  
ALDAYA V, 1991, PHYS LETT A, V156, P315
[5]   GROUP-THEORY APPROACH TO SCATTERING [J].
ALHASSID, Y ;
GURSEY, F ;
IACHELLO, F .
ANNALS OF PHYSICS, 1983, 148 (02) :346-380
[6]  
[Anonymous], PHYS REV D
[7]   QUANTUM FIELD-THEORY IN ANTI-DE SITTER SPACE-TIME [J].
AVIS, SJ ;
ISHAM, CJ ;
STOREY, D .
PHYSICAL REVIEW D, 1978, 18 (10) :3565-3576
[8]  
BIRREL ND, 1982, QUANTUM FIELD CURVED
[9]  
Cotaescu II, 1997, J MATH PHYS, V38, P5505, DOI 10.1063/1.532148
[10]  
Cotaescu II, 1998, J MATH PHYS, V39, P3043, DOI 10.1063/1.532237