Structural Target Controllability of Linear Networks

被引:27
作者
Czeizler, Eugen [1 ,2 ]
Wu, Kai-Chiu [1 ,2 ]
Gratie, Cristian [1 ,2 ]
Kanhaiya, Krishna [1 ,2 ]
Petre, Ion [1 ,2 ]
机构
[1] Abo Akad Univ, Turku Ctr Comp Sci, Computat Biomdeling Lab, SF-20500 Turku, Finland
[2] Abo Akad Univ, Dept Comp Sci, SF-20500 Turku, Finland
基金
芬兰科学院;
关键词
Structural control; optimization algorithm; NP-hardness; network control; target control; linear networks;
D O I
10.1109/TCBB.2018.2797271
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Computational analysis of the structure of intra-cellular molecular interaction networks can suggest novel therapeutic approaches for systemic diseases like cancer. Recent research in the area of network science has shown that network control theory can be a powerful tool in the understanding and manipulation of such bio-medical networks. In 2011, Liu et al. developed a polynomial time algorithm computing the size of the minimal set of nodes controlling a linear network. In 2014, Gao et al. generalized the problem for target control, minimizing the set of nodes controlling a target within a linear network. The authors developed a Greedy approximation algorithm while leaving open the complexity of the optimization problem. We prove here that the target controllability problem is NP-hard in all practical setups, i.e., when the control power of any individual input is bounded by some constant. We also show that the algorithm provided by Gao et al. fails to provide a valid solution in some special cases, and an additional validation step is required. We fix and improve their algorithm using several heuristics, obtaining in the end an up to 10-fold decrease in running time and also a decrease in the size of solutions.
引用
收藏
页码:1217 / 1228
页数:12
相关论文
共 21 条
[1]  
Ahuja R., 1993, NETW FLOWS THEORY AL
[2]  
[Anonymous], 1963, Journal of the Society for Industrial and Applied Mathematics, Series A: Control, DOI DOI 10.1137/0301010
[3]   Genetic Interactions in Cancer Progression and Treatment [J].
Ashworth, Alan ;
Lord, Christopher J. ;
Reis-Filho, Jorge S. .
CELL, 2011, 145 (01) :30-38
[4]   Gene essentiality and synthetic lethality in haploid human cells [J].
Blomen, Vincent A. ;
Majek, Peter ;
Jae, Lucas T. ;
Bigenzahn, Johannes W. ;
Nieuwenhuis, Joppe ;
Staring, Jacqueline ;
Sacco, Roberto ;
van Diemen, Ferdy R. ;
Olk, Nadine ;
Stukalov, Alexey ;
Marceau, Caleb ;
Janssen, Hans ;
Carette, Jan E. ;
Bennett, Keiryn L. ;
Colinge, Jacques ;
Superti-Furga, Giulio ;
Brummelkamp, Thijn R. .
SCIENCE, 2015, 350 (6264) :1092-1096
[5]   Searching for synthetic lethality in cancer [J].
Brough, Rachel ;
Frankum, Jessica R. ;
Costa-Cabral, Sara ;
Lord, Christopher J. ;
Ashworth, Alan .
CURRENT OPINION IN GENETICS & DEVELOPMENT, 2011, 21 (01) :34-41
[6]  
Hopcroft J. E., 1973, SIAM Journal on Computing, V2, P225, DOI 10.1137/0202019
[7]   Network pharmacology: the next paradigm in drug discovery [J].
Hopkins, Andrew L. .
NATURE CHEMICAL BIOLOGY, 2008, 4 (11) :682-690
[8]   Controlling Directed Protein Interaction Networks in Cancer [J].
Kanhaiya, Krishna ;
Czeizler, Eugen ;
Gratie, Cristian ;
Petre, Ion .
SCIENTIFIC REPORTS, 2017, 7
[9]   COLT-Cancer: functional genetic screening resource for essential genes in human cancer cell lines [J].
Koh, Judice L. Y. ;
Brown, Kevin R. ;
Sayad, Azin ;
Kasimer, Dahlia ;
Ketela, Troy ;
Moffat, Jason .
NUCLEIC ACIDS RESEARCH, 2012, 40 (D1) :D957-D963
[10]   The dynamic control of signal transduction networks in cancer cells [J].
Kolch, Walter ;
Halasz, Melinda ;
Granovskaya, Marina ;
Kholodenko, Boris N. .
NATURE REVIEWS CANCER, 2015, 15 (09) :515-527