Travelling wave solutions of a two-dimensional generalized Sawada-Kotera equation

被引:46
作者
Adem, Abdullahi Rashid [1 ]
Lu, Xing [2 ]
机构
[1] North West Univ, Int Inst Symmetry Anal & Math Modelling, Dept Math Sci, Mafikeng Campus,Private Bag X 2046, ZA-2735 Mmabatho, South Africa
[2] Beijing Jiao Tong Univ, Dept Math, Beijing 100044, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Lie symmetry method; Simplest equation method; Generalized Sawada-Kotera equation; MADELUNG FLUID DESCRIPTION; BILINEAR REPRESENTATION; BACKLUND TRANSFORMATION; MODEL; COLLISIONS; EXPANSION;
D O I
10.1007/s11071-015-2538-7
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Lie symmetry analysis is performed on a two-dimensional generalized Sawada-Kotera equation, which arises in various problems in mathematical physics. Exact solutions are obtained using the Lie point symmetries method and the simplest equation method.
引用
收藏
页码:915 / 922
页数:8
相关论文
共 27 条
[1]  
Ablowitz M.J., 1991, Nonlinear Evolution Equations and Inverse Scattering
[2]  
Bluman GW., 1989, APPL MATH SCI
[3]   On some applications of transformation groups to a class of nonlinear dispersive equations [J].
Bruzon, M. S. ;
Gandarias, M. L. ;
Torrisi, M. ;
Tracina, R. .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2012, 13 (03) :1139-1151
[4]  
Dubrovsky VG, 2011, THEOR MATH PHYS+, V167, P725, DOI 10.1007/s11232-011-0057-3
[6]  
Ibragimov N. H., 1994, CRC handbook of Lie group analysis of differential equations, P1
[7]   Simplest equation method to look for exact solutions of nonlinear differential equations [J].
Kudryashov, NA .
CHAOS SOLITONS & FRACTALS, 2005, 24 (05) :1217-1231
[8]   Seven common errors in finding exact solutions of nonlinear differential equations [J].
Kudryashov, Nikolai A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2009, 14 (9-10) :3507-3529
[9]   Jacobi elliptic function expansion method and periodic wave solutions of nonlinear wave equations [J].
Liu, SK ;
Fu, ZT ;
Liu, SD ;
Zhao, Q .
PHYSICS LETTERS A, 2001, 289 (1-2) :69-74
[10]  
Lu X., 2013, CHAOS, V23, P1