Deep Learning Based Pedestrian Detection at Distance in Smart Cities

被引:9
|
作者
Dinakaran, Ranjith K. [1 ]
Easom, Philip [1 ]
Bouridane, Ahmed [1 ]
Zhang, Li [1 ]
Jiang, Richard [3 ]
Mehboob, Fozia [2 ]
Rauf, Abdul [2 ]
机构
[1] Northumbria Univ, Comp & Informat Sci, Newcastle Upon Tyne, Tyne & Wear, England
[2] Imam Mohammed Ibn Saud Islamic Univ, Comp Sci, Riyadh, Saudi Arabia
[3] Sch Comp & Commun, Lancaster, England
来源
INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2 | 2020年 / 1038卷
关键词
Deep neural networks; Object detection; Smart homecare; Smart cities;
D O I
10.1007/978-3-030-29513-4_43
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Generative adversarial networks (GANs) have been promising for many computer vision problems due to their powerful capabilities to enhance the data for training and test. In this paper, we leveraged GANs and proposed a new architecture with a cascaded Single Shot Detector (SSD) for pedestrian detection at distance, which is yet a challenge due to the varied sizes of pedestrians in videos at distance. To overcome the low-resolution issues in pedestrian detection at distance, DCGAN is employed to improve the resolution first to reconstruct more discriminative features for a SSD to detect objects in images or videos. A crucial advantage of our method is that it learns a multiscale metric to distinguish multiple objects at different distances under one image, while DCGAN serves as an encoder-decoder platform to generate parts of an image that contain better discriminative information. To measure the effectiveness of our proposed method, experiments were carried out on the Canadian Institute for Advanced Research (CIFAR) dataset, and it was demonstrated that the proposed new architecture achieved a much better detection rate, particularly on vehicles and pedestrians at distance, making it highly suitable for smart cities applications that need to discover key objects or pedestrians at distance.
引用
收藏
页码:588 / 593
页数:6
相关论文
共 50 条
  • [1] Deep learning for pedestrian collective behavior analysis in smart cities: A model of group trajectory outlier detection
    Belhadi, Asma
    Djenouri, Youcef
    Srivastava, Gautam
    Djenouri, Djamel
    Lin, Jerry Chun-Wei
    Fortino, Giancarlo
    INFORMATION FUSION, 2021, 65 : 13 - 20
  • [2] Research on text detection on building surfaces in smart cities based on deep learning
    Long, Yuanpeng
    Sun, Weiwei
    Pang, Yu
    Wang, Huiqian
    Zhang, Guo
    SOFT COMPUTING, 2022, 26 (19) : 10103 - 10114
  • [3] Research on text detection on building surfaces in smart cities based on deep learning
    Yuanpeng Long
    Weiwei Sun
    Yu Pang
    Huiqian Wang
    Guo Zhang
    Soft Computing, 2022, 26 : 10103 - 10114
  • [4] Deep Learning Approaches for Object Detection in Autonomous Driving: Smart Cities Perspective
    Khalifa, Othman O.
    Daud, Hariz Naufal Mohd
    Ali, Elmustafa Sayed
    Saeed, Mamoon M.
    TOWARDS NEW E-INFRASTRUCTURE AND E-SERVICES FOR DEVELOPING COUNTRIES, AFRICOMM 2023, PT I, 2025, 587 : 68 - 80
  • [5] Replay Attack Detection in Smart Cities Using Deep Learning
    Elsaeidy, Asmaa A.
    Jagannath, Nishant
    Sanchis, Adrian Garrido
    Jamalipour, Abbas
    Munasinghe, Kumudu S.
    IEEE ACCESS, 2020, 8 (08): : 137825 - 137837
  • [6] Real- Time Deep Learning based Road Deterioration Detection for Smart Cities
    Mehajabin, Nusrat
    Ma, Zhenchao
    Wang, Yixiao
    Tohidypour, Hamid Reza
    Nasiopoulos, Panos
    2022 18TH INTERNATIONAL CONFERENCE ON WIRELESS AND MOBILE COMPUTING, NETWORKING AND COMMUNICATIONS (WIMOB), 2022,
  • [7] Pedestrian-vehicle detection based on deep learning
    Xu Q.
    Li Y.
    Wang G.
    Jilin Daxue Xuebao (Gongxueban)/Journal of Jilin University (Engineering and Technology Edition), 2019, 49 (05): : 1661 - 1667
  • [8] A Visualized Botnet Detection System Based Deep Learning for the Internet of Things Networks of Smart Cities
    Vinayakumar, R.
    Alazab, Mamoun
    Srinivasan, Sriram
    Pham, Quoc-Viet
    Padannayil, Soman Kotti
    Simran, K.
    IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2020, 56 (04) : 4436 - 4456
  • [9] Deep Learning based on CNN for Pedestrian Detection: An Overview and Analysis
    Saeidi, Mahmoud
    Ahmadi, Ali
    2018 9TH INTERNATIONAL SYMPOSIUM ON TELECOMMUNICATIONS (IST), 2018, : 108 - 112
  • [10] Detection of myocardial infarction based on novel deep transfer learning methods for urban healthcare in smart cities
    Ahmed Alghamdi
    Mohamed Hammad
    Hassan Ugail
    Asmaa Abdel-Raheem
    Khan Muhammad
    Hany S. Khalifa
    Ahmed A. Abd El-Latif
    Multimedia Tools and Applications, 2024, 83 : 14913 - 14934