A gauge/gravity relation in the one-loop effective action

被引:4
作者
Basar, Goekce [1 ]
Dunne, Gerald V. [1 ]
机构
[1] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA
关键词
QUANTUM FIELD-THEORY; SUPER SELF-DUALITY; EFFECTIVE POTENTIALS; 2-POINT FUNCTIONS; ZETA-FUNCTION; STRING THEORY; HEAT KERNEL; ANTI; DETERMINANTS; SUPERSYMMETRY;
D O I
10.1088/1751-8113/43/7/072002
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We identify an unusual new gauge/gravity relation: the one-loop effective action for a massive spinor in 2n-dimensional AdS space is expressed in terms of precisely the same function (a certain multiple gamma function) as the one-loop effective action for a massive charged scalar in 4n dimensions in a maximally symmetric background electromagnetic field (one for which the eigenvalues of F mu nu. are maximally degenerate, corresponding in four dimensions to a self-dual field, equivalently to a field of definite helicity), subject to the identification F-2 <-> Lambda, where Lambda is the gravitational curvature. Since these effective actions generate the low energy limit of all one-loop multi-leg graviton or gauge amplitudes, this implies a nontrivial gauge/gravity relation at the non-perturbative level and at the amplitude level.
引用
收藏
页数:8
相关论文
共 60 条
[51]  
Kuzenko SM, 2003, J HIGH ENERGY PHYS
[52]   On the low-energy limit of the QED N-photon amplitudes [J].
Martin, LC ;
Schubert, C ;
Sandoval, VMV .
NUCLEAR PHYSICS B, 2003, 668 (1-2) :335-344
[53]   CURVATURE CUBED TERMS IN STRING THEORY EFFECTIVE ACTIONS [J].
METSAEV, RR ;
TSEYTLIN, AA .
PHYSICS LETTERS B, 1987, 185 (1-2) :52-58
[54]  
Quine JR, 1996, ROCKY MT J MATH, V26, P719, DOI 10.1216/rmjm/1181072081
[55]   On Barnes' multiple zeta and gamma functions [J].
Ruijsenaars, SNM .
ADVANCES IN MATHEMATICS, 2000, 156 (01) :107-132
[56]  
SIMON B, 1977, ADV MATH, V24, P244, DOI 10.1016/S0001-8708(77)80044-3
[57]  
TSEYTLIN AA, 1987, NUCL PHYS B, V291, P876
[58]   VECTOR FIELD EFFECTIVE ACTION IN THE OPEN SUPERSTRING THEORY [J].
TSEYTLIN, AA .
NUCLEAR PHYSICS B, 1986, 276 (02) :391-428
[59]  
VARDI I, 1988, SIAM J MATH ANAL, V19, P493, DOI 10.1137/0519035