A new method for the nonlinear transformation of means and covariances in filters and estimators

被引:2677
作者
Julier, S [1 ]
Uhlmann, J
Durrant-Whyte, HF
机构
[1] IDAK Ind, Jefferson City, MO USA
[2] Univ Oxford, Robot Res Grp, Oxford, England
[3] Dept Mech & Mechatron Engn, Sydney, NSW, Australia
关键词
covariance matrices; estimation; filtering; missile detection and tracking; mobile robots; nonlinear filters; prediction methods;
D O I
10.1109/9.847726
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper describes a new approach for generalizing the Kalman filter to nonlinear systems. A set of samples are used to parameterize the mean and covariance of a (not necessarily Gaussian) probability distribution. The method yields a filter that is more accurate than an extended Kalman filter (EKF) and easier to implement than an EKF or a Gauss second-order filter. Its effectiveness is demonstrated using an example.
引用
收藏
页码:477 / 482
页数:6
相关论文
共 25 条
[1]   SUBOPTIMAL STATE ESTIMATION FOR CONTINUOUS-TIME NONLINEAR SYSTEMS FOR DISCRETE NOISY MEASUREMENTS [J].
ATHANS, M ;
WISHNER, RP ;
BERTOLINI, A .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1968, AC13 (05) :504-+
[2]  
BELLAIRE RL, 1995, P SOC PHOTO-OPT INS, V2561, P240, DOI 10.1117/12.217701
[3]  
CATLIN DE, 1989, APPL MATH SCI, V71, P84
[4]  
Clark S., 1999, THESIS U SYDNEY AUST
[5]  
DAUM FE, 1988, BAYESIAN ANAL TIME S, P199
[6]   NOVEL-APPROACH TO NONLINEAR NON-GAUSSIAN BAYESIAN STATE ESTIMATION [J].
GORDON, NJ ;
SALMOND, DJ ;
SMITH, AFM .
IEE PROCEEDINGS-F RADAR AND SIGNAL PROCESSING, 1993, 140 (02) :107-113
[7]  
Jazwinski A.H., 2007, STOCHASTIC PROCESSES
[8]  
JULIER SJ, 1995, PROCEEDINGS OF THE 1995 AMERICAN CONTROL CONFERENCE, VOLS 1-6, P1628
[9]  
Julier SJ, 1997, P AER 11 INT S AER D
[10]  
JULIER SJ, 1994, GEN METHOD APPROXIMA