covariance matrices;
estimation;
filtering;
missile detection and tracking;
mobile robots;
nonlinear filters;
prediction methods;
D O I:
10.1109/9.847726
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
This paper describes a new approach for generalizing the Kalman filter to nonlinear systems. A set of samples are used to parameterize the mean and covariance of a (not necessarily Gaussian) probability distribution. The method yields a filter that is more accurate than an extended Kalman filter (EKF) and easier to implement than an EKF or a Gauss second-order filter. Its effectiveness is demonstrated using an example.
机构:
Univ Amsterdam, Biosyst Data Anal, Fac Sci, NL-1090 GE Amsterdam, NetherlandsUniv Amsterdam, Biosyst Data Anal, Fac Sci, NL-1090 GE Amsterdam, Netherlands
Smilde, Age K.
Timmerman, Marieke E.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Groningen, Heymans Inst, Groningen, NetherlandsUniv Amsterdam, Biosyst Data Anal, Fac Sci, NL-1090 GE Amsterdam, Netherlands
Timmerman, Marieke E.
Saccenti, Edoardo
论文数: 0引用数: 0
h-index: 0
机构:
Univ Wageningen & Res Ctr, Lab Syst & Synthet Biol, Wageningen, NetherlandsUniv Amsterdam, Biosyst Data Anal, Fac Sci, NL-1090 GE Amsterdam, Netherlands
Saccenti, Edoardo
Jansen, Jeroen J.
论文数: 0引用数: 0
h-index: 0
机构:
Radboud Univ Nijmegen, Inst Mol & Mat, NL-6525 ED Nijmegen, NetherlandsUniv Amsterdam, Biosyst Data Anal, Fac Sci, NL-1090 GE Amsterdam, Netherlands
Jansen, Jeroen J.
Hoefsloot, Huub C. J.
论文数: 0引用数: 0
h-index: 0
机构:
Univ Amsterdam, Biosyst Data Anal, Fac Sci, NL-1090 GE Amsterdam, NetherlandsUniv Amsterdam, Biosyst Data Anal, Fac Sci, NL-1090 GE Amsterdam, Netherlands