Shale gas potential of Lower Permian marine-continental transitional black shales in the Southern North China Basin, central China: Characterization of organic geochemistry

被引:79
作者
Dang, Wei [1 ,2 ]
Zhang, Jinchuan [1 ,2 ]
Tang, Xuan [1 ,2 ]
Chen, Qian [1 ,2 ]
Han, Shuangbiao [1 ,2 ]
Li, Zhongming [3 ]
Du, Xiaorui [1 ,2 ]
Wei, Xiaoliang [1 ,2 ]
Zhang, Mingqiang [1 ,2 ]
Liu, Jing [4 ]
Peng, Jianlong [1 ,2 ]
Huang, Zhenglin [1 ,2 ]
机构
[1] China Univ Geosci, Minist Land & Resources, Key Lab Shale Gas Explorat & Evaluat, Beijing 100083, Peoples R China
[2] China Univ Geosci, Sch Energy Resources, Beijing 100083, Peoples R China
[3] Henan Inst Geol Survey, Zhengzhou 450000, Peoples R China
[4] Peking Univ, Sch Earth & Space Sci, Beijing 100871, Peoples R China
关键词
Shale gas; Organic geochemistry; Hydrocarbon generative potential; Transitional shale; Southern North China Basin; North China; NORTHEASTERN BRITISH-COLUMBIA; BARNETT SHALE; DEPOSITIONAL-ENVIRONMENTS; KEROGEN; MATTER; INDICATORS; PROSPECT; ORIGIN;
D O I
10.1016/j.jngse.2015.12.035
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
With the purpose of characterizing the organic geochemistry and investigating the shale gas potential, we applied multiple methods, including quantifying organic matter richness, polarizing microscope observations, maceral composition analysis, kerogen stable carbon isotope analysis, vitrinite reflectance analysis, and Rock-Eval pyrolysis were performed on black shale samples from the Lower Permian Shanxi and Taiyuan formations in the Mouye-1 well of the Southern North China Basin. The results indicate that the average total organic carbon (TOCpd) content at the present time is 1.73% and 2.41% for Shanxi and Taiyuan shale samples, respectively. The microscopic distribution of organic matter includes scattered types and local enrichment types, as well as layered enrichment types. These types were revealed by polarizing microscope observations and exhibit an excellent correlation with the TOC content of shale samples. Based on maceral compositions and kerogen stable carbon isotopes, organic matter in Shanxi and Taiyuan shales is characterized by gas-prone, inertinite-dominated type III kerogen. The thermal maturity, as indicated by measuring vitrinite reflectance (3.2-3.6%R-o), suggests that shale samples from Shanxi and Taiyuan formation in the Mouye-1 well have evolved far into the metagenesis stage, and no significant amounts of hydrocarbons can be generated. The remaining hydrocarbon generative potential, S2 (0.02-0.77 mg HC/g Rock), which was determined by Rock-Eval pyrolysis, also supports this conclusion. Additionally, the original total organic carbon (TOCo) content and hydrocarbon generative potential (S2(o)) were reconstructed based on Jarvie's equations for these thermally over-mature shales; this reconstruction indicated poor to fair original source rock potentials based on the correlations of TOCo and S2(o). Furthermore, the total volume of gas generated during thermal maturation was calculated using a conversion formula based on molar mass and resulted in a yield of 5.69 cm(3)/g Rock and 3.54 cm(3)/g Rock for Shanxi and Taiyuan shale samples, respectively. Overall, inertinite-dominated maceral compositions of kerogen with extremely high thermal maturity can have a negative effect on the gas potential of shale in the Southern North China Basin. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:639 / 650
页数:12
相关论文
共 98 条
[21]  
CONNAN J, 1974, AAPG BULL, V58, P2516
[22]  
COOLES GP, 1986, ORG GEOCHEM, V10, P235, DOI 10.1016/0146-6380(86)90026-4
[23]   Geochemical truths in large data sets. I: Geochemical screening data [J].
Cornford, C ;
Gardner, P ;
Burgess, C .
ORGANIC GEOCHEMISTRY, 1998, 29 (1-3) :519-530
[24]   COAL MACERAL RATIOS AS INDICATORS OF ENVIRONMENT OF DEPOSITION - DO THEY WORK FOR OMBROGENOUS MIRES - AN EXAMPLE FROM THE MIOCENE OF NEW-ZEALAND [J].
CROSDALE, PJ .
ORGANIC GEOCHEMISTRY, 1993, 20 (06) :797-809
[25]   Fractured shale-gas systems [J].
Curtis, JB .
AAPG BULLETIN, 2002, 86 (11) :1921-1938
[26]   A new approach to interpreting Rock-Eval S2 and TOC data for kerogen quality assessment [J].
Dahl, B ;
Bojesen-Koefoed, J ;
Holm, A ;
Justwan, H ;
Rasmussen, E ;
Thomsen, E .
ORGANIC GEOCHEMISTRY, 2004, 35 (11-12) :1461-1477
[27]  
Dai J.X., 2000, GEOLOGICAL BASIS MAI, P69
[28]  
Daly A.R., 1987, AAPG B, V71
[29]   Three common source rock evaluation errors made by geologists during prospect or play appraisals [J].
Dembicki, Harry, Jr. .
AAPG BULLETIN, 2009, 93 (03) :341-356
[30]  
[刁玉杰 Diao Yujie], 2011, [地层学杂志, Journal of Stratigraphy], V35, P88