Laser frequency stabilization using folded cavity and mirror reflectivity tuning

被引:7
作者
Liu, X. [1 ,2 ]
Cassou, K. [1 ]
Chiche, R. [1 ]
Dupraz, K. [1 ]
Favier, P. [1 ]
Flaminio, R. [3 ]
Honda, Y. [4 ]
Huang, W. H. [2 ]
Martens, A. [1 ]
Michel, C. [3 ]
Pinard, L. [3 ]
Sassolas, B. [3 ]
Soskov, V. [1 ]
Tang, C. X. [2 ]
Zomer, F. [1 ]
机构
[1] Univ Paris 11, CNRS, IN2P3, LAL,Ctr Sci Orsay, Bat 200,BP 34, F-91898 Orsay, France
[2] Tsinghua Univ, Dept Engn Phys, Beijing 100084, Peoples R China
[3] Univ Lyon 1, CNRS, Lab Mat Avances, IN2P3, 7 Ave Pierre Coubertin, F-69622 Villeurbanne, France
[4] High Energy Accelerator Res Org KEK, Accelerator Inst, Oho 1-1, Tsukuba, Ibaraki 3050801, Japan
关键词
Polarization; Optical cavity; Stabilization; Lock; SPATIAL MODE INTERFERENCE; OPTICAL CAVITY; SPECTROSCOPY; LOCKING; PHASE;
D O I
10.1016/j.optcom.2016.02.028
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A new method of laser frequency stabilization using polarization property of an optical cavity is proposed. In a standard Fabry-Perot cavity, the coating layers thickness of cavity mirrors is calculated to obtain the same phase shift for s- and p-wave but a slight detuning from the nominal thickness can produce s- and p-wave phase detuning. As a result, each wave accumulates a different round-trip phase shift and resonates at a different frequency. Using this polarization property, an error signal is generated by a simple setup consisting of a quarter wave-plate rotated at 45 degrees, a polarizing beam splitter and two photodiodes. This method exhibits similar error signal as the Pound-Drever-Hall technique but without need for any frequency modulation. Lock theory and experimental results are presented in this paper. (C) 2016 Elsevier B.V. All rights reserved.
引用
收藏
页码:84 / 88
页数:5
相关论文
共 21 条
[1]   Beam emittance measurement with laser wire scanners in the International Linear Collider beam delivery system [J].
Agapov, I. ;
Blair, G. A. ;
Woodley, M. .
PHYSICAL REVIEW SPECIAL TOPICS-ACCELERATORS AND BEAMS, 2007, 10 (11)
[2]  
[Anonymous], 2000, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light
[3]   Cavity stabilization using the weak intrinsic birefringence of dielectric mirrors [J].
Asenbaum, Peter ;
Arndt, Markus .
OPTICS LETTERS, 2011, 36 (19) :3720-3722
[4]   Birefringence of interferential mirrors at normal incidence [J].
Bielsa, F. ;
Dupays, A. ;
Fouche, M. ;
Battesti, R. ;
Robilliard, C. ;
Rizzo, C. .
APPLIED PHYSICS B-LASERS AND OPTICS, 2009, 97 (02) :457-463
[5]   An introduction to Pound-Drever-Hall laser frequency stabilization [J].
Black, ED .
AMERICAN JOURNAL OF PHYSICS, 2001, 69 (01) :79-87
[6]   Measurement of the phase anisotropy of very high reflectivity interferential mirrors [J].
Brandi, F ;
DellaValle, F ;
DeRiva, AM ;
Micossi, P ;
Perrone, F ;
Rizzo, C ;
Ruoso, G ;
Zavattini, G .
APPLIED PHYSICS B-LASERS AND OPTICS, 1997, 65 (03) :351-355
[7]   LASER PHASE AND FREQUENCY STABILIZATION USING AN OPTICAL-RESONATOR [J].
DREVER, RWP ;
HALL, JL ;
KOWALSKI, FV ;
HOUGH, J ;
FORD, GM ;
MUNLEY, AJ ;
WARD, H .
APPLIED PHYSICS B-PHOTOPHYSICS AND LASER CHEMISTRY, 1983, 31 (02) :97-105
[8]   LASER FREQUENCY STABILIZATION BY POLARIZATION SPECTROSCOPY OF A REFLECTING REFERENCE CAVITY [J].
HANSCH, TW ;
COUILLAUD, B .
OPTICS COMMUNICATIONS, 1980, 35 (03) :441-444
[9]   Stabilization of a non-planar optical cavity using its polarization property [J].
Honda, Y. ;
Shimizu, H. ;
Fukuda, M. ;
Omori, T. ;
Urakawa, J. ;
Sakaue, K. ;
Sakai, H. ;
Sasao, N. .
OPTICS COMMUNICATIONS, 2009, 282 (15) :3108-3112
[10]   Laser-electron storage ring [J].
Huang, ZR ;
Ruth, RD .
PHYSICAL REVIEW LETTERS, 1998, 80 (05) :976-979