Implications of RCP emissions on future concentration and direct radiative forcing of secondary organic aerosol over China

被引:9
作者
Zhang, Yu [1 ,2 ]
Liao, Hong [3 ]
Ding, Xiang [4 ,5 ]
Jo, Duseong [6 ,7 ]
Li, Ke [8 ]
机构
[1] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Atmospher Boundary Layer Phys & Atm, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Sch Environm Sci & Engn, Collaborat Innovat Ctr Atmospher Environm & Equip, Jiangsu Key Lab Atmospher Environm Monitoring & P, Nanjing 210044, Jiangsu, Peoples R China
[4] Chinese Acad Sci, Guangzhou Inst Geochem, State Key Lab Organ Geochem, Guangzhou 510640, Guangdong, Peoples R China
[5] Chinese Acad Sci, Guangzhou Inst Geochem, Guangdong Prov Key Lab Environm Protect & Resourc, Guangzhou 510640, Guangdong, Peoples R China
[6] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[7] Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA
[8] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
中国国家自然科学基金;
关键词
SOA; RCP; Anthropogenic emission; Contribution; DRF; RIVER DELTA REGION; BASIS-SET APPROACH; AIR-QUALITY; CARBONACEOUS AEROSOL; AROMATIC-HYDROCARBONS; PARTICULATE POLLUTION; CHEMICAL-COMPOSITIONS; TRANSPORT; MODEL; SOA;
D O I
10.1016/j.scitotenv.2018.05.274
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study applies the nested-grid version of Goddard Earth Observing System (GEOS) chemical transport model (GEOS-Chem) to examine future changes (2000-2050) in SOA concentration and associated direct radiative forcing (DRF) over China under the Representative Concentration Pathways (RCPs). The projected changes in SOA concentrations over 2010-2050 generally follow future changes in emissions of toluene and xylene. On an annual mean basis, the largest increase in SOA over eastern China is simulated to be 25.1% in 2020 under RCP2.6, 20.4% in 2020 under RCP4.5, 56.3% in 2050 under RCP6.0, and 44.6% in 2030 under RCP8.5. The role of SOA in PM2.5 increases with each decade in 2010-2050 under RCP2.6, RCP4.5, and RCPS.5, with a maximum ratio of concentration of SOA to that of PM2.5 of 16.3% in 2050 under RCP4.5 as averaged over eastern China (20 degrees-45 degrees N, 100 degrees-125 degrees E). Concentrations of SOA are projected to be able to exceed those of sulfate, ammonium, and black carbon (BC) in the future. The future changes in SOA levels over eastern China are simulated to lead to domain-averaged (20 degrees-45 degrees N, 100 degrees-125 degrees E) DRI's of +0.19 W m(-2), +0.12 W m(-2), -0.28 W m(-2), and -0.17 W m(-2) in 2050 relative to 2000 under RCP2.6, RCP4.5, RCP6.0, and RCP8.5, respectively. Model results indicate that future changes in SOA owing to future changes in anthropogenic precursor emissions are important for future air quality planning and climate mitigation measures. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1187 / 1204
页数:18
相关论文
共 74 条
[11]   European atmosphere in 2050, a regional air quality and climate perspective under CMIP5 scenarios [J].
Colette, A. ;
Bessagnet, B. ;
Vautard, R. ;
Szopa, S. ;
Rao, S. ;
Schucht, S. ;
Klimont, Z. ;
Menut, L. ;
Clain, G. ;
Meleux, F. ;
Curci, G. ;
Rouil, L. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (15) :7451-7471
[12]   Construction of a 1° x 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model [J].
Cooke, WF ;
Liousse, C ;
Cachier, H ;
Feichter, J .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D18) :22137-22162
[13]   Spatial and seasonal variations of isoprene secondary organic aerosol in China: Significant impact of biomass burning during winter [J].
Ding, Xiang ;
He, Quan-Fu ;
Shen, Ru-Qin ;
Yu, Qing-Qing ;
Zhang, Yu-Qing ;
Xin, Jin-Yuan ;
Wen, Tian-Xue ;
Wang, Xin-Ming .
SCIENTIFIC REPORTS, 2016, 6
[14]   Spatial distributions of secondary organic aerosols from isoprene, monoterpenes, β-caryophyllene, and aromatics over China during summer [J].
Ding, Xiang ;
He, Quan-Fu ;
Shen, Ru-Qin ;
Yu, Qing-Qing ;
Wang, Xin-Ming .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2014, 119 (20) :11877-11891
[15]   Tracer-based estimation of secondary organic carbon in the Pearl River Delta, south China [J].
Ding, Xiang ;
Wang, Xin-Ming ;
Gao, Bo ;
Fu, Xiao-Xin ;
He, Quan-Fu ;
Zhao, Xiu-Ying ;
Yu, Jian-Zhen ;
Zheng, Mei .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
[16]   Sources and characteristics of carbonaceous aerosol in two largest cities in Pearl River Delta Region, China [J].
Duan, Jingchun ;
Tan, Jihua ;
Cheng, Dingxi ;
Bi, Xinhui ;
Deng, Wenjing ;
Sheng, Guoying ;
Fu, Jiamo ;
Wong, M. H. .
ATMOSPHERIC ENVIRONMENT, 2007, 41 (14) :2895-2903
[17]   The impact of transpacific transport of mineral dust in the United States [J].
Fairlie, T. Duncan ;
Jacob, Daniel J. ;
Park, Rokjin J. .
ATMOSPHERIC ENVIRONMENT, 2007, 41 (06) :1251-1266
[18]   Modeling global secondary organic aerosol formation and processing with the volatility basis set: Implications for anthropogenic secondary organic aerosol [J].
Farina, Salvatore C. ;
Adams, Peter J. ;
Pandis, Spyros N. .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2010, 115
[19]   Simulations of organic aerosol concentrations during springtime in the Guanzhong Basin, China [J].
Feng, Tian ;
Li, Guohui ;
Cao, Junji ;
Bei, Naifang ;
Shen, Zhenxing ;
Zhou, Weijian ;
Liu, Suixin ;
Zhang, Ting ;
Wang, Yichen ;
Huang, Ru-jin ;
Tie, Xuexi ;
Molina, Luisa T. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2016, 16 (15) :10045-10061
[20]   Carbonaceous aerosols in China: top-down constraints on primary sources and estimation of secondary contribution [J].
Fu, T. -M. ;
Cao, J. J. ;
Zhang, X. Y. ;
Lee, S. C. ;
Zhang, Q. ;
Han, Y. M. ;
Qu, W. J. ;
Han, Z. ;
Zhang, R. ;
Wang, Y. X. ;
Chen, D. ;
Henze, D. K. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2012, 12 (05) :2725-2746