Implications of RCP emissions on future concentration and direct radiative forcing of secondary organic aerosol over China

被引:9
作者
Zhang, Yu [1 ,2 ]
Liao, Hong [3 ]
Ding, Xiang [4 ,5 ]
Jo, Duseong [6 ,7 ]
Li, Ke [8 ]
机构
[1] Chinese Acad Sci, Inst Atmospher Phys, State Key Lab Atmospher Boundary Layer Phys & Atm, Beijing 100029, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Nanjing Univ Informat Sci & Technol, Sch Environm Sci & Engn, Collaborat Innovat Ctr Atmospher Environm & Equip, Jiangsu Key Lab Atmospher Environm Monitoring & P, Nanjing 210044, Jiangsu, Peoples R China
[4] Chinese Acad Sci, Guangzhou Inst Geochem, State Key Lab Organ Geochem, Guangzhou 510640, Guangdong, Peoples R China
[5] Chinese Acad Sci, Guangzhou Inst Geochem, Guangdong Prov Key Lab Environm Protect & Resourc, Guangzhou 510640, Guangdong, Peoples R China
[6] Univ Colorado, Cooperat Inst Res Environm Sci, Boulder, CO 80309 USA
[7] Univ Colorado, Dept Chem & Biochem, Campus Box 215, Boulder, CO 80309 USA
[8] Harvard Univ, John A Paulson Sch Engn & Appl Sci, Cambridge, MA 02138 USA
基金
中国国家自然科学基金;
关键词
SOA; RCP; Anthropogenic emission; Contribution; DRF; RIVER DELTA REGION; BASIS-SET APPROACH; AIR-QUALITY; CARBONACEOUS AEROSOL; AROMATIC-HYDROCARBONS; PARTICULATE POLLUTION; CHEMICAL-COMPOSITIONS; TRANSPORT; MODEL; SOA;
D O I
10.1016/j.scitotenv.2018.05.274
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study applies the nested-grid version of Goddard Earth Observing System (GEOS) chemical transport model (GEOS-Chem) to examine future changes (2000-2050) in SOA concentration and associated direct radiative forcing (DRF) over China under the Representative Concentration Pathways (RCPs). The projected changes in SOA concentrations over 2010-2050 generally follow future changes in emissions of toluene and xylene. On an annual mean basis, the largest increase in SOA over eastern China is simulated to be 25.1% in 2020 under RCP2.6, 20.4% in 2020 under RCP4.5, 56.3% in 2050 under RCP6.0, and 44.6% in 2030 under RCP8.5. The role of SOA in PM2.5 increases with each decade in 2010-2050 under RCP2.6, RCP4.5, and RCPS.5, with a maximum ratio of concentration of SOA to that of PM2.5 of 16.3% in 2050 under RCP4.5 as averaged over eastern China (20 degrees-45 degrees N, 100 degrees-125 degrees E). Concentrations of SOA are projected to be able to exceed those of sulfate, ammonium, and black carbon (BC) in the future. The future changes in SOA levels over eastern China are simulated to lead to domain-averaged (20 degrees-45 degrees N, 100 degrees-125 degrees E) DRI's of +0.19 W m(-2), +0.12 W m(-2), -0.28 W m(-2), and -0.17 W m(-2) in 2050 relative to 2000 under RCP2.6, RCP4.5, RCP6.0, and RCP8.5, respectively. Model results indicate that future changes in SOA owing to future changes in anthropogenic precursor emissions are important for future air quality planning and climate mitigation measures. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:1187 / 1204
页数:18
相关论文
共 74 条
[1]   Sulfate formation in sea-salt aerosols: Constraints from oxygen isotopes [J].
Alexander, B ;
Park, RJ ;
Jacob, DJ ;
Li, QB ;
Yantosca, RM ;
Savarino, J ;
Lee, CCW ;
Thiemens, MH .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2005, 110 (D10) :1-12
[2]  
[Anonymous], 2013, Climate Change 2013, V5, DOI DOI 10.1017/CBO9781107415324
[3]   Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation [J].
Bey, I ;
Jacob, DJ ;
Yantosca, RM ;
Logan, JA ;
Field, BD ;
Fiore, AM ;
Li, QB ;
Liu, HGY ;
Mickley, LJ ;
Schultz, MG .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2001, 106 (D19) :23073-23095
[4]  
Cai WJ, 2017, NAT CLIM CHANGE, V7, P257, DOI [10.1038/nclimate3249, 10.1038/NCLIMATE3249]
[5]  
Calvert J.G., 2002, The mechanism of atmospheric oxidation of aromatics hydrocarbons
[6]   Spatial and seasonal variations of atmospheric organic carbon and elemental carbon in Pearl River Delta Region, China [J].
Cao, JJ ;
Lee, SC ;
Ho, KF ;
Zou, SC ;
Fung, K ;
Li, Y ;
Watson, JG ;
Chow, JC .
ATMOSPHERIC ENVIRONMENT, 2004, 38 (27) :4447-4456
[7]   Characteristics of carbonaceous aerosol in Pearl River Delta Region, China during 2001 winter period [J].
Cao, JJ ;
Lee, SC ;
Ho, KF ;
Zhang, XY ;
Zou, SC ;
Fung, K ;
Chow, JC ;
Watson, JG .
ATMOSPHERIC ENVIRONMENT, 2003, 37 (11) :1451-1460
[8]   Winter and Summer PM2.5 Chemical Compositions in Fourteen Chinese Cities [J].
Cao, Jun-Ji ;
Shen, Zhen-Xing ;
Chow, Judith C. ;
Watson, John G. ;
Lee, Shun-Cheng ;
Tie, Xue-Xi ;
Ho, Kin-Fai ;
Wang, Ge-Hui ;
Han, Yong-Ming .
JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION, 2012, 62 (10) :1214-1226
[9]   Model Representation of Secondary Organic Aerosol in CMAQv4.7 [J].
Carlton, Annmarie G. ;
Bhave, Prakash V. ;
Napelenok, Sergey L. ;
Edney, Edward D. ;
Sarwar, Golam ;
Pinder, Robert W. ;
Pouliot, George A. ;
Houyoux, Marc .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2010, 44 (22) :8553-8560
[10]   Regional CO pollution and export in China simulated by the high-resolution nested-grid GEOS-Chem model [J].
Chen, D. ;
Wang, Y. ;
McElroy, M. B. ;
He, K. ;
Yantosca, R. M. ;
Le Sager, P. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2009, 9 (11) :3825-3839