A compact large voltage-compliance high output-impedance programmable current source for implantable microstimulators

被引:93
作者
Ghovanloo, M [1 ]
Najafi, K
机构
[1] N Carolina State Univ, Dept Elect & Comp Engn, Bion Lab, Raleigh, NC 27695 USA
[2] Univ Michigan, Ctr Wireless Integrated Microsyst, Ann Arbor, MI 48109 USA
关键词
charge balancing; CMOS; cochlear implant; current source; implantable microelectronics; microstimulation; neural prosthesis; triode region; voltage compliance;
D O I
10.1109/TBME.2004.839797
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
A new CMOS current source is described for biomedical implantable microstimulator applications, which utilizes MOS transistors in deep triode region as linearized voltage controlled resistors (VCR). The VCR current source achieves large voltage compliance, up to 97% of the supply voltage, while maintaining high output impedance in the 100 MOmega range to keep the stimulus current constant within 1% of the desired value irrespective of the site and tissue impedances. This approach improves stimulation efficiency, extends power supply lifetime, and saves chip area especially when the stimulation current level is high in the milliampere range. A prototype 4-channel microstimulator chip is fabricated in the AMI 1.5-mum, 2-metal, 2-poly, n-well standard CMOS process. With a 5-V supply, each stimulating site driver provides at least 4.25-V compliance and > 10 MOmega output impedance, while sinking up to 210 AA, and occupies 0.05 mm(2) in chip area. A modular 32-site wireless neural stimulation microsystem, utilizing the VCR current source, is under development.
引用
收藏
页码:97 / 105
页数:9
相关论文
共 27 条
[1]  
Arabi K, 1999, IEEE Trans Rehabil Eng, V7, P204, DOI 10.1109/86.769411
[2]   VISUAL SENSATIONS PRODUCED BY INTRACORTICAL MICROSTIMULATION OF THE HUMAN OCCIPITAL CORTEX [J].
BAK, M ;
GIRVIN, JP ;
HAMBRECHT, FT ;
KUFTA, CV ;
LOEB, GE ;
SCHMIDT, EM .
MEDICAL & BIOLOGICAL ENGINEERING & COMPUTING, 1990, 28 (03) :257-259
[3]  
Baker R.J., 2019, CMOS: Circuit Design, Layout, and Simulation
[4]  
BOYER S, 2000, IEEE T REHABIL ENG, V8, P789
[5]   An arbitrary waveform stimulus circuit for visual prostheses using a low-area multibias DAC [J].
DeMarco, SC ;
Liu, WT ;
Singh, PR ;
Lazzi, G ;
Humayun, MS ;
Weiland, JD .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2003, 38 (10) :1679-1690
[6]   All-MOS voltage-to-current converter [J].
Fotouhi, B .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2001, 36 (01) :147-151
[7]   A modular 32-site wireless neural stimulation microsystem [J].
Ghovanloo, M ;
Najafi, K .
2004 IEEE INTERNATIONAL SOLID-STATE CIRCUITS CONFERENCE, DIGEST OF TECHNICAL PAPERS, 2004, 47 :226-227
[8]  
Ghovanloo M, 2003, P ANN INT IEEE EMBS, V25, P1979
[9]   Towards a button-sized 1024-site wireless cortical microstianulating array [J].
Ghovanloo, M ;
Wise, KD ;
Najafi, K .
1ST INTERNATIONAL IEEE EMBS CONFERENCE ON NEURAL ENGINEERING 2003, CONFERENCE PROCEEDINGS, 2003, :138-141
[10]   A BiCMOS wireless stimulator chip for micromachined stimulating microprobes [J].
Ghovanloo, M ;
Najafi, K .
SECOND JOINT EMBS-BMES CONFERENCE 2002, VOLS 1-3, CONFERENCE PROCEEDINGS: BIOENGINEERING - INTEGRATIVE METHODOLOGIES, NEW TECHNOLOGIES, 2002, :2113-2114