Diamonds in the Rough: Harnessing Tumor-Associated Myeloid Cells for Cancer Therapy

被引:29
作者
Clappaert, Emile J. [1 ,2 ]
Murgaski, Aleksandar [1 ,2 ]
Van Damme, Helena [1 ,2 ]
Kiss, Mate [1 ,2 ]
Laoui, Damya [1 ,2 ]
机构
[1] VIB Ctr Inflammat Res, Myeloid Cell Immunol Lab, Brussels, Belgium
[2] Vrije Univ Brussel, Lab Cellular & Mol Immunol, Brussels, Belgium
关键词
tumor-associated dendritic cells; tumor-associated macrophages; myeloid-derived suppressor cells; tumor-associated neutrophils; cancer immunotherapy; tumor microenvironment; ANTITUMOR IMMUNE-RESPONSES; MACROPHAGE MANNOSE RECEPTOR; LOW-DOSE CYCLOPHOSPHAMIDE; ANTIGEN-PRESENTING CELLS; SUPPRESSOR-CELLS; DENDRITIC CELLS; G-CSF; CHECKPOINT BLOCKADE; MELANOMA PATIENTS; TYROSINE KINASE;
D O I
10.3389/fimmu.2018.02250
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
Therapeutic approaches that engage immune cells to treat cancer are becoming increasingly utilized in the clinics and demonstrated durable clinical bene fit in several solid tumor types. Most of the current immunotherapies focus on manipulating T cells, however, the tumor microenvironment (TME) is abundantly infiltrated by a heterogeneous population of tumor-associated myeloid cells, including tumor-associated macrophages (TAMs), tumor-associated dendritic cells (TADCs), tumor-associated neutrophils (TANs), and myeloid-derived suppressor cells (MDSCs). Educated by signals perceived in the TME, these cells often acquire tumor-promoting properties ultimately favoring disease progression. Upon appropriate stimuli, myeloid cells can exhibit cytoxic, phagocytic, and antigen-presenting activities thereby bolstering antitumor immune responses. Thus, depletion, reprogramming or reactivation of myeloid cells to either directly eradicate malignant cells or promote antitumor T-cell responses is an emerging field of interest. In this review, we briefly discuss the tumor-promoting and tumor-suppressive roles of myeloid cells in the TME, and describe potential therapeutic strategies in preclinical and clinical development that aim to target them to further expand the range of current treatment options.
引用
收藏
页数:20
相关论文
共 249 条
[1]   Gene-modified dendritic cell vaccines for cancer [J].
Abraham, Rebecca S. ;
Mitchell, Duane A. .
CYTOTHERAPY, 2016, 18 (11) :1446-1455
[2]   Dendritic cell-based therapeutic cancer vaccines: past, present and future [J].
Ahmed, Md Selim ;
Bae, Yong-Soo .
CLINICAL AND EXPERIMENTAL VACCINE RESEARCH, 2014, 3 (02) :113-116
[3]   Yeast-Derived Particulate β-Glucan Treatment Subverts the Suppression of Myeloid-Derived Suppressor Cells (MDSC) by Inducing Polymorphonuclear MDSC Apoptosis and Monocytic MDSC Differentiation to APC in Cancer [J].
Albeituni, Sabrin H. ;
Ding, Chuanlin ;
Liu, Min ;
Hu, Xiaoling ;
Luo, Fengling ;
Kloecker, Goetz ;
Bousamra, Michael, II ;
Zhang, Huang-ge ;
Yan, Jun .
JOURNAL OF IMMUNOLOGY, 2016, 196 (05) :2167-2180
[4]   Neutrophil Function: From Mechanisms to Disease [J].
Amulic, Borko ;
Cazalet, Christel ;
Hayes, Garret L. ;
Metzler, Kathleen D. ;
Zychlinsky, Arturo .
ANNUAL REVIEW OF IMMUNOLOGY, VOL 30, 2012, 30 :459-489
[5]   Type I IFNs induce anti-tumor polarization of tumor associated neutrophils in mice and human [J].
Andzinski, Lisa ;
Kasnitz, Nadine ;
Stahnke, Stephanie ;
Wu, Ching-Fang ;
Gereke, Marcus ;
von Koeckritz-Blickwede, Maren ;
Schilling, Bastian ;
Brandau, Sven ;
Weiss, Siegfried ;
Jablonska, Jadwiga .
INTERNATIONAL JOURNAL OF CANCER, 2016, 138 (08) :1982-1993
[6]   Myeloid-derived suppressor cells and proinflammatory cytokines as targets for cancer therapy [J].
Atretkhany, K. -S. N. ;
Drutskaya, M. S. .
BIOCHEMISTRY-MOSCOW, 2016, 81 (11) :1274-1283
[7]   Single-Cell Map of Diverse Immune Phenotypes in the Breast Tumor Microenvironment [J].
Azizi, Elham ;
Carr, Ambrose J. ;
Plitas, George ;
Cornish, Andrew E. ;
Konopacki, Catherine ;
Prabhakaran, Sandhya ;
Nainys, Juozas ;
Wu, Kenmin ;
Kiseliovas, Vaidotas ;
Setty, Manu ;
Choi, Kristy ;
Fromme, Rachel M. ;
Phuong Dao ;
McKenney, Peter T. ;
Wasti, Ruby C. ;
Kadaveru, Krishna ;
Mazutis, Linas ;
Rudensky, Alexander Y. ;
Pe'er, Dana .
CELL, 2018, 174 (05) :1293-+
[8]   Suppression of microRNA activity amplifies IFN-γ-induced macrophage activation and promotes anti-tumour immunity [J].
Baer, Caroline ;
Squadrito, Mario Leonardo ;
Laoui, Damya ;
Thompson, Danielle ;
Hansen, Sarah K. ;
Kiialainen, Anna ;
Hoves, Sabine ;
Ries, Carola H. ;
Ooi, Chia-Huey ;
De Palma, Michele .
NATURE CELL BIOLOGY, 2016, 18 (07) :790-+
[9]   G-CSF maintains controlled neutrophil mobilization during acute inflammation by negatively regulating CXCR2 signaling [J].
Bajrami, Besnik ;
Zhu, Haiyan ;
Kwak, Hyun-Jeong ;
Mondal, Subhanjan ;
Hou, Qingming ;
Geng, Guangfeng ;
Karatepe, Kutay ;
Zhang, Yu C. ;
Nombela-Arrieta, Cesar ;
Park, Shin-Young ;
Loison, Fabien ;
Sakai, Jiro ;
Xu, Yuanfu ;
Silberstein, Leslie E. ;
Luo, Hongbo R. .
JOURNAL OF EXPERIMENTAL MEDICINE, 2016, 213 (10) :1999-2018
[10]   Expansion of a BDCA1+CD14+ Myeloid Cell Population in Melanoma Patients May Attenuate the Efficacy of Dendritic Cell Vaccines [J].
Bakdash, Ghaith ;
Buschow, Sonja I. ;
Gorris, Mark A. J. ;
Halilovic, Altuna ;
Hato, Stanleyson V. ;
Skold, Annette E. ;
Schreibelt, Gerty ;
Sittig, Simone P. ;
Torensma, Ruurd ;
Duiveman-de Boer, Tjitske ;
Schroeder, Christoph ;
Smits, Evelien L. ;
Figdor, Carl G. ;
de Vries, I. Jolanda M. .
CANCER RESEARCH, 2016, 76 (15) :4332-4346