Counterexamples to the nonorientable genus conjecture for complete tripartite graphs

被引:5
作者
Ellingham, MN
Stephens, C
Zha, XY
机构
[1] Vanderbilt Univ, Dept Math, Nashville, TN 37240 USA
[2] Middle Tennessee State Univ, Dept Math Sci, Murfreesboro, TN 37132 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.ejc.2004.01.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In 1976, Stahl and White conjectured that the minimum nonorientable genus of K-l,K-m,K-n (where l greater than or equal to m greater than or equal to n) is ... We prove that K-4,K-4,K-1 , K-4,K-4,K-3, and K-3 3,K-3 are counterexamples to this conjecture. We also show that all other complete tripartite graphs K-l,K-m,K-n with l greater than or equal to m greater than or equal to n and l less than or equal to 5 satisfy the conjecture. Moreover, all complete tripartite graphs with l less than or equal to 5 satisfy the similar conjecture for orientable genus. (C)0 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:387 / 399
页数:13
相关论文
共 18 条
[2]   On the genus of joins and compositions of graphs [J].
Craft, DL .
DISCRETE MATHEMATICS, 1998, 178 (1-3) :25-50
[3]  
ELLINGHAM MN, UNPUB NONORIENTABLE
[4]  
Gross J.L., 1987, Topological graph theory
[5]  
Heawood P. J., 1890, Quarterly Journal of Mathematics, V24, P332
[6]  
KAWARABAYASHI KI, IN PRESS SIAM J DISC
[7]  
MOHAR BOJAN, 2001, JH STUD MATH SCI
[8]   GENUS OF CONSTANT TRICOLORABLE GRAPH [J].
RINGEL, G ;
YOUNGS, JWT .
COMMENTARII MATHEMATICI HELVETICI, 1970, 45 (02) :152-&
[9]   SOLUTION OF HEAWOOD MAP-COLORING PROBLEM [J].
RINGEL, G ;
YOUNGS, JWT .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1968, 60 (02) :438-+
[10]  
RINGEL G, 1965, J REINE ANGEW MATH, V220, P88