Analysis of the ROA of an anaerobic digestion process via data-driven Koopman operator

被引:6
作者
Garcia-Tenorio, Camilo [1 ,2 ]
Mojica-Nava, Eduardo [3 ]
Sbarciog, Mihaela [4 ]
Vande Wouwer, Alain [5 ]
机构
[1] Univ Nacl Colombia, Dept Mech & Mechatron Engn, Bogota, Colombia
[2] Univ Mons, Control Syst Estimat Control & Optimizat SECO Lab, Mons, Belgium
[3] Univ Nacl Colombia, Dept Elect & Elect Engn, Bogota, Colombia
[4] Katholieke Univ Leuven, Chem & Biochem Proc Tecnol & Control, Ghent, Belgium
[5] Univ Mons, Syst Estimat Control & Optimizat SECO Lab, Mons, Belgium
来源
NONLINEAR ENGINEERING - MODELING AND APPLICATION | 2021年 / 10卷 / 01期
关键词
Anaerobic Digestion; Extended Dynamic Mode Decomposition; Koopman Operator; Region of Attraction; DYNAMIC-MODE DECOMPOSITION; STABILITY ANALYSIS; SYSTEMS;
D O I
10.1515/nleng-2021-0009
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Nonlinear biochemical systems such as the anaerobic digestion process experience the problem of the multi-stability phenomena, and thus, the dynamic spectrum of the system has several undesired equilibrium states. As a result, the selection of initial conditions and operating parameters to avoid such states is of importance. In this work, we present a data-driven approach, which relies on the generation of several system trajectories of the anaerobic digestion system and the construction of a data-driven Koopman operator to give a concise criterion for the classification of arbitrary initial conditions in the state space. Unlike other approximation methods, the criterion does not rely on difficult geometrical analysis of the identified boundaries to produce the classification.
引用
收藏
页码:109 / 131
页数:23
相关论文
共 50 条
[31]   Data fusion via intrinsic dynamic variables: An application of data-driven Koopman spectral analysis [J].
Williams, Matthew O. ;
Rowley, Clarence W. ;
Mezic, Igor ;
Kevrekidis, Ioannis G. .
EPL, 2015, 109 (04)
[32]   Data-driven fault detection and isolation of nonlinear systems using deep learning for Koopman operator [J].
Bakhtiaridoust, Mohammadhosein ;
Yadegar, Meysam ;
Meskin, Nader .
ISA TRANSACTIONS, 2023, 134 :200-211
[33]   Data-Driven quasi-LPV Model Predictive Control Using Koopman Operator Techniques [J].
Cisneros, Pablo S. G. ;
Datar, Adwait ;
Goettsch, Patrick ;
Werner, Herbert .
IFAC PAPERSONLINE, 2020, 53 (02) :6062-6068
[34]   Data-Driven Fault Detection and Isolation for Multirotor System Using Koopman Operator [J].
Lee, Jayden Dongwoo ;
Im, Sukjae ;
Kim, Lamsu ;
Ahn, Hyungjoo ;
Bang, Hyochoong .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2024, 110 (03)
[35]   Data-Driven Modeling of Automated Vehicles: Koopman Operator Approach and Its Application [J].
Kim J.S. ;
Chung C.C. .
Journal of Institute of Control, Robotics and Systems, 2022, 28 (11) :1038-1044
[36]   Data-Driven Operator Theoretic Methods for Phase Space Learning and Analysis [J].
Nandanoori, Sai Pushpak ;
Sinha, Subhrajit ;
Yeung, Enoch .
JOURNAL OF NONLINEAR SCIENCE, 2022, 32 (06)
[37]   Multiple-layer statistical methodology for developing data-driven models of anaerobic digestion process [J].
Kim, Moonil ;
Cui, Fenghao .
JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2023, 347
[38]   Data-Driven Dynamic State Estimation Framework Using a Koopman Operator-Based Linear Predictor [J].
Yang, Deyou ;
Gao, Han ;
Chen, Zhe ;
Lv, Yanling ;
Wang, Lixin .
IEEE ACCESS, 2025, 13 :31660-31670
[39]   Data-Driven Feedback Linearization Using the Koopman Generator [J].
Gadginmath, Darshan ;
Krishnan, Vishaal ;
Pasqualetti, Fabio .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (12) :8844-8851
[40]   A Survey on the Methods and Results of Data-Driven Koopman Analysis in the Visualization of Dynamical Systems [J].
Parmar, Nishaal ;
Refai, Hazem H. ;
Runolfsson, Thordur .
IEEE TRANSACTIONS ON BIG DATA, 2022, 8 (03) :723-738