Analysis of the ROA of an anaerobic digestion process via data-driven Koopman operator

被引:6
作者
Garcia-Tenorio, Camilo [1 ,2 ]
Mojica-Nava, Eduardo [3 ]
Sbarciog, Mihaela [4 ]
Vande Wouwer, Alain [5 ]
机构
[1] Univ Nacl Colombia, Dept Mech & Mechatron Engn, Bogota, Colombia
[2] Univ Mons, Control Syst Estimat Control & Optimizat SECO Lab, Mons, Belgium
[3] Univ Nacl Colombia, Dept Elect & Elect Engn, Bogota, Colombia
[4] Katholieke Univ Leuven, Chem & Biochem Proc Tecnol & Control, Ghent, Belgium
[5] Univ Mons, Syst Estimat Control & Optimizat SECO Lab, Mons, Belgium
来源
NONLINEAR ENGINEERING - MODELING AND APPLICATION | 2021年 / 10卷 / 01期
关键词
Anaerobic Digestion; Extended Dynamic Mode Decomposition; Koopman Operator; Region of Attraction; DYNAMIC-MODE DECOMPOSITION; STABILITY ANALYSIS; SYSTEMS;
D O I
10.1515/nleng-2021-0009
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Nonlinear biochemical systems such as the anaerobic digestion process experience the problem of the multi-stability phenomena, and thus, the dynamic spectrum of the system has several undesired equilibrium states. As a result, the selection of initial conditions and operating parameters to avoid such states is of importance. In this work, we present a data-driven approach, which relies on the generation of several system trajectories of the anaerobic digestion system and the construction of a data-driven Koopman operator to give a concise criterion for the classification of arbitrary initial conditions in the state space. Unlike other approximation methods, the criterion does not rely on difficult geometrical analysis of the identified boundaries to produce the classification.
引用
收藏
页码:109 / 131
页数:23
相关论文
共 50 条
[21]   Optimal Control of Quadrotor Attitude System Using Data-driven Approximation of Koopman Operator [J].
Zheng, Ketong ;
Huang, Peng ;
Fettweis, Gerhard P. .
IFAC PAPERSONLINE, 2023, 56 (02) :834-840
[22]   A Data-Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition [J].
Williams, Matthew O. ;
Kevrekidis, Ioannis G. ;
Rowley, Clarence W. .
JOURNAL OF NONLINEAR SCIENCE, 2015, 25 (06) :1307-1346
[23]   Integrating autoencoder with Koopman operator to design a linear data-driven model predictive controller [J].
Wang, Xiaonian ;
Ayachi, Sheel ;
Corbett, Brandon ;
Mhaskar, Prashant .
CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2025, 103 (03) :1099-1111
[24]   Data-Driven Control Method Based on Koopman Operator for Suspension System of Maglev Train [J].
Han, Peichen ;
Xu, Junqi ;
Rong, Lijun ;
Wang, Wen ;
Sun, Yougang ;
Lin, Guobin .
ACTUATORS, 2024, 13 (10)
[25]   Data-Driven Control of Soft Robots Using Koopman Operator Theory [J].
Bruder, Daniel ;
Fu, Xun ;
Gillespie, R. Brent ;
Remy, C. David ;
Vasudevan, Ram .
IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (03) :948-961
[26]   Auxiliary Functions as Koopman Observables: Data-Driven Analysis of Dynamical Systems via Polynomial Optimization [J].
Bramburger, Jason J. ;
Fantuzzi, Giovanni .
JOURNAL OF NONLINEAR SCIENCE, 2024, 34 (01)
[27]   Robust data-driven control for nonlinear systems using the Koopman operator [J].
Straesser, Robin ;
Berberich, Julian ;
Allgower, Frank .
IFAC PAPERSONLINE, 2023, 56 (02) :2257-2262
[28]   Auxiliary Functions as Koopman Observables: Data-Driven Analysis of Dynamical Systems via Polynomial Optimization [J].
Jason J. Bramburger ;
Giovanni Fantuzzi .
Journal of Nonlinear Science, 2024, 34
[29]   Data-Driven Economic Predictive Control of Wastewater Treatment Process with Input-Output Koopman Operator [J].
Han, Minghao ;
Yao, Jingshi ;
Law, Adrian Wing-Keung ;
Yin, Xunyuan .
2024 AMERICAN CONTROL CONFERENCE, ACC 2024, 2024, :3025-3030
[30]   Extending Data-Driven Koopman Analysis to Actuated Systems [J].
Williams, Matthew O. ;
Hemati, Maziar S. ;
Dawson, Scott T. M. ;
Kevrekidis, Ioannis G. ;
Rowley, Clarence W. .
IFAC PAPERSONLINE, 2016, 49 (18) :704-709