Analysis of the ROA of an anaerobic digestion process via data-driven Koopman operator

被引:6
作者
Garcia-Tenorio, Camilo [1 ,2 ]
Mojica-Nava, Eduardo [3 ]
Sbarciog, Mihaela [4 ]
Vande Wouwer, Alain [5 ]
机构
[1] Univ Nacl Colombia, Dept Mech & Mechatron Engn, Bogota, Colombia
[2] Univ Mons, Control Syst Estimat Control & Optimizat SECO Lab, Mons, Belgium
[3] Univ Nacl Colombia, Dept Elect & Elect Engn, Bogota, Colombia
[4] Katholieke Univ Leuven, Chem & Biochem Proc Tecnol & Control, Ghent, Belgium
[5] Univ Mons, Syst Estimat Control & Optimizat SECO Lab, Mons, Belgium
来源
NONLINEAR ENGINEERING - MODELING AND APPLICATION | 2021年 / 10卷 / 01期
关键词
Anaerobic Digestion; Extended Dynamic Mode Decomposition; Koopman Operator; Region of Attraction; DYNAMIC-MODE DECOMPOSITION; STABILITY ANALYSIS; SYSTEMS;
D O I
10.1515/nleng-2021-0009
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Nonlinear biochemical systems such as the anaerobic digestion process experience the problem of the multi-stability phenomena, and thus, the dynamic spectrum of the system has several undesired equilibrium states. As a result, the selection of initial conditions and operating parameters to avoid such states is of importance. In this work, we present a data-driven approach, which relies on the generation of several system trajectories of the anaerobic digestion system and the construction of a data-driven Koopman operator to give a concise criterion for the classification of arbitrary initial conditions in the state space. Unlike other approximation methods, the criterion does not rely on difficult geometrical analysis of the identified boundaries to produce the classification.
引用
收藏
页码:109 / 131
页数:23
相关论文
共 50 条
  • [21] Data-Driven Control Method Based on Koopman Operator for Suspension System of Maglev Train
    Han, Peichen
    Xu, Junqi
    Rong, Lijun
    Wang, Wen
    Sun, Yougang
    Lin, Guobin
    [J]. ACTUATORS, 2024, 13 (10)
  • [22] Data-Driven Control of Soft Robots Using Koopman Operator Theory
    Bruder, Daniel
    Fu, Xun
    Gillespie, R. Brent
    Remy, C. David
    Vasudevan, Ram
    [J]. IEEE TRANSACTIONS ON ROBOTICS, 2021, 37 (03) : 948 - 961
  • [23] Robust data-driven control for nonlinear systems using the Koopman operator
    Straesser, Robin
    Berberich, Julian
    Allgower, Frank
    [J]. IFAC PAPERSONLINE, 2023, 56 (02): : 2257 - 2262
  • [24] Auxiliary Functions as Koopman Observables: Data-Driven Analysis of Dynamical Systems via Polynomial Optimization
    Jason J. Bramburger
    Giovanni Fantuzzi
    [J]. Journal of Nonlinear Science, 2024, 34
  • [25] Extending Data-Driven Koopman Analysis to Actuated Systems
    Williams, Matthew O.
    Hemati, Maziar S.
    Dawson, Scott T. M.
    Kevrekidis, Ioannis G.
    Rowley, Clarence W.
    [J]. IFAC PAPERSONLINE, 2016, 49 (18): : 704 - 709
  • [26] Data fusion via intrinsic dynamic variables: An application of data-driven Koopman spectral analysis
    Williams, Matthew O.
    Rowley, Clarence W.
    Mezic, Igor
    Kevrekidis, Ioannis G.
    [J]. EPL, 2015, 109 (04)
  • [27] Data-driven fault detection and isolation of nonlinear systems using deep learning for Koopman operator
    Bakhtiaridoust, Mohammadhosein
    Yadegar, Meysam
    Meskin, Nader
    [J]. ISA TRANSACTIONS, 2023, 134 : 200 - 211
  • [28] Data-Driven Fault Detection and Isolation for Multirotor System Using Koopman Operator
    Lee, Jayden Dongwoo
    Im, Sukjae
    Kim, Lamsu
    Ahn, Hyungjoo
    Bang, Hyochoong
    [J]. JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2024, 110 (03)
  • [29] Data-Driven quasi-LPV Model Predictive Control Using Koopman Operator Techniques
    Cisneros, Pablo S. G.
    Datar, Adwait
    Goettsch, Patrick
    Werner, Herbert
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 6062 - 6068
  • [30] Data-Driven Modeling of Automated Vehicles: Koopman Operator Approach and Its Application
    Kim J.S.
    Chung C.C.
    [J]. Journal of Institute of Control, Robotics and Systems, 2022, 28 (11): : 1038 - 1044