Analysis of the ROA of an anaerobic digestion process via data-driven Koopman operator

被引:6
|
作者
Garcia-Tenorio, Camilo [1 ,2 ]
Mojica-Nava, Eduardo [3 ]
Sbarciog, Mihaela [4 ]
Vande Wouwer, Alain [5 ]
机构
[1] Univ Nacl Colombia, Dept Mech & Mechatron Engn, Bogota, Colombia
[2] Univ Mons, Control Syst Estimat Control & Optimizat SECO Lab, Mons, Belgium
[3] Univ Nacl Colombia, Dept Elect & Elect Engn, Bogota, Colombia
[4] Katholieke Univ Leuven, Chem & Biochem Proc Tecnol & Control, Ghent, Belgium
[5] Univ Mons, Syst Estimat Control & Optimizat SECO Lab, Mons, Belgium
来源
NONLINEAR ENGINEERING - MODELING AND APPLICATION | 2021年 / 10卷 / 01期
关键词
Anaerobic Digestion; Extended Dynamic Mode Decomposition; Koopman Operator; Region of Attraction; DYNAMIC-MODE DECOMPOSITION; STABILITY ANALYSIS; SYSTEMS;
D O I
10.1515/nleng-2021-0009
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Nonlinear biochemical systems such as the anaerobic digestion process experience the problem of the multi-stability phenomena, and thus, the dynamic spectrum of the system has several undesired equilibrium states. As a result, the selection of initial conditions and operating parameters to avoid such states is of importance. In this work, we present a data-driven approach, which relies on the generation of several system trajectories of the anaerobic digestion system and the construction of a data-driven Koopman operator to give a concise criterion for the classification of arbitrary initial conditions in the state space. Unlike other approximation methods, the criterion does not rely on difficult geometrical analysis of the identified boundaries to produce the classification.
引用
收藏
页码:109 / 131
页数:23
相关论文
共 50 条
  • [1] Data-driven spectral analysis of the Koopman operator
    Korda, Milan
    Putinar, Mihai
    Mezic, Igor
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2020, 48 (02) : 599 - 629
  • [2] Analysis of a Class of Hyperbolic Systems via Data-Driven Koopman Operator
    Garcia-Tenorio, C.
    Tellez-Castro, D.
    Mojica-Nava, E.
    Vande Wouwer, A.
    2019 23RD INTERNATIONAL CONFERENCE ON SYSTEM THEORY, CONTROL AND COMPUTING (ICSTCC), 2019, : 566 - 571
  • [3] Modularized data-driven approximation of the Koopman operator and generator
    Guo, Yang
    Schaller, Manuel
    Worthmann, Karl
    Streif, Stefan
    PHYSICA D-NONLINEAR PHENOMENA, 2025, 476
  • [4] Data-driven Estimation for a Region of Attraction for Transient Stability Using the Koopman Operator
    Zheng, Le
    Liu, Xin
    Xu, Yanhui
    Hu, Wei
    Liu, Chongru
    CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, 2023, 9 (04): : 1405 - 1413
  • [5] Linearization in the Large of the Anaerobic Digestion Process Using a Reduced-Order Koopman Operator
    Garcia-Tenorio, Camilo
    Sbarciog, Mihaela
    Mojica-Nava, Eduardo
    Vande Wouwer, Alain
    IFAC PAPERSONLINE, 2020, 53 (02): : 16840 - 16845
  • [6] Data-Driven Models for Control Engineering Applications Using the Koopman Operator
    Junker, Annika
    Timmermann, Julia
    Traechtler, Ansgar
    2022 3RD INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE, ROBOTICS AND CONTROL, AIRC, 2022, : 1 - 9
  • [7] Data-driven transient stability analysis using the Koopman operator
    Matavalam, Amar Ramapuram
    Hou, Boya
    Choi, Hyungjin
    Bose, Subhonmesh
    Vaidya, Umesh
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 162
  • [8] Data-driven techniques for fault detection in anaerobic digestion process
    Kazemi, Pezhman
    Bengoa, Christophe
    Steyer, Jean-Philippe
    Giralt, Jaume
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2021, 146 (146) : 905 - 915
  • [9] Data-driven Koopman operator approach for computational neuroscience
    Marrouch, Natasza
    Slawinska, Joanna
    Giannakis, Dimitrios
    Read, Heather L.
    ANNALS OF MATHEMATICS AND ARTIFICIAL INTELLIGENCE, 2020, 88 (11-12) : 1155 - 1173
  • [10] Kernel Learning for Data-Driven Spectral Analysis of Koopman Operators
    Takeishi, Naoya
    ASIAN CONFERENCE ON MACHINE LEARNING, VOL 101, 2019, 101 : 956 - 971