CLOSED HYPERSURFACES OF LOW ENTROPY IN R4 ARE ISOTOPICALLY TRIVIAL

被引:7
作者
Bernstein, Jacob [1 ]
Wang, L. U. [2 ]
机构
[1] Johns Hopkins Univ, Dept Math, Baltimore, MD 21218 USA
[2] CALTECH, Dept Math, Pasadena, CA 91125 USA
基金
美国国家科学基金会;
关键词
MEAN-CURVATURE FLOW; SELF-SHRINKERS; SINGULARITIES; REGULARITY; UNIQUENESS; EXISTENCE; PROPERTY; SURFACES; MOTION;
D O I
10.1215/00127094-2022-0012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that any closed connected hypersurface in R-4 with entropy less than or equal to that of the round cylinder is smoothly isotopic to the standard three-sphere.
引用
收藏
页码:1531 / 1558
页数:28
相关论文
共 42 条
[1]   On the subdivision of (3)-space by a polyhedron [J].
Alexander, JW .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 1924, 10 :6-8
[2]   A COMPUTED EXAMPLE OF NONUNIQUENESS OF MEAN-CURVATURE FLOW IN R(3) [J].
ANGENENT, S ;
ILMANEN, T ;
CHOPP, DL .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1995, 20 (11-12) :1937-1958
[3]  
BERNSTEIN J, PEKING MATH J PREPRI
[4]  
BERNSTEIN j, ARXIV190202642 MATHD
[5]   Relative expander entropy in the presence of a two-sided obstacle and applications [J].
Bernstein, Jacob ;
Wang, Lu .
ADVANCES IN MATHEMATICS, 2022, 399
[6]   The space of asymptotically conical self-expanders of mean curvature flow [J].
Bernstein, Jacob ;
Wang, Lu .
MATHEMATISCHE ANNALEN, 2021, 380 (1-2) :175-230
[7]   Smooth Compactness for Spaces of Asymptotically Conical Self-Expanders of Mean Curvature Flow [J].
Bernstein, Jacob ;
Wang, Lu .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, 2021 (12) :9016-9044
[8]   Topology of closed hypersurfaces of small entropy [J].
Bernstein, Jacob ;
Wang, Lu .
GEOMETRY & TOPOLOGY, 2018, 22 (02) :1109-1141
[9]   A TOPOLOGICAL PROPERTY OF ASYMPTOTICALLY CONICAL SELF-SHRINKERS OF SMALL ENTROPY [J].
Bernstein, Jacob ;
Wang, Lu .
DUKE MATHEMATICAL JOURNAL, 2017, 166 (03) :403-435
[10]   A sharp lower bound for the entropy of closed hypersurfaces up to dimension six [J].
Bernstein, Jacob ;
Wang, Lu .
INVENTIONES MATHEMATICAE, 2016, 206 (03) :601-627